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1 Introduction

The VDS detector used by the CDS/NIS spectrograph is not a photon-counting detector. Therefore,
one cannot simply characterize the statistics in an NIS observation from the raw numbers from the
detector. However, there is a fairly simple way to derive the correct counting statistics.

Noise sources in the NIS detector (also known as the Viewfinder Detector Subsystem, or VDS)
can be broken down into two main catagories. One catagory of noise is the photon statistics, which
is related to the number of photons observed by the detector. The other is detector noise which is
independent of the photons. Each of these is discussed in the following sections.

Please note that version 6 of this document has been modified to include the effect
of burn-in on the readout noise, as discussed below.

2 Photon statistics

There are two sources of photon-related statistical noise in the NIS data. First of all, there is the
Poisson noise associated with the photons which interact with the detector. The other source of
noise is the fluctuation in the amount of amplification in the detector system, known as the pulse
height distribution (PHD). This latter effect has never been successfully measured, but a good rule
of thumb is to assume that it is comparable to the Poisson noise, which holds if the pulse height
distribution has an exponential shape.

To estimate the contribution from Poisson statistics, one must know how many photons one
has collected. The procedure to do this is as follows:

1. Read in the original raw data file.

2. Apply the routine VDS CALIB to convert the raw data into photon-events/pixel/s. The term
“photon-events” refers to those EUV photons which actually interact with the detector.

3. Multiply the output from VDS CALIB by the exposure time of the observation to
convert to photon-events/pixel (N). The exposure time is given as the parameter
QLDS.HEADER.EXPTIME in the quicklook data structure. Strictly speaking, one should
really multiply by the corrected exposure time, which is slightly longer than that given in
the header. However, this correction is very small (0.1165 seconds for the voltage the normal
VDS operating voltage), and can safely be ignored in most cases.

4. The Poisson noise in the data is
√
N , where N is the number of photon-events/pixel estimated

from the previous step. If one is interested in the statistics of a group of pixels, then N is
the sum over all those pixels (e.g. summing over a line profile). Assuming that the PHD
component is comparable, and adds as the sum of the squares, the total photon noise is√

2N .

5. It is, of course, most useful to express the noise in the units of the data being evaluated. The
easiest way to do this is to calculate the ratio of the noise to the signal. This fractional noise
can be expressed as fN =

√
2/N . Multiply fN into the calibrated data whose noise is being

evaluated. This is your statistical noise.
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3 Detector noise

3.1 Readout noise

At low light levels, one needs to worry about additional effects, such as the noise associated with
the readout of the detector. This is discussed in the VDS Calibration Report (CDS Software
Note #13). Table 8 in that report gave the following 1-sigma readout noise values for the four CDS
quadrants:

Quadrant RMS deviation (ADC/pixel)

A 1.67
B 1.52
C 1.88
D 1.41

During commissioning, it was decided to use one of the backup readout modes, so that NIS1 is
read out through port A, and NIS2 is read out through port D. However, there’s no guarantee that
the readout noise in orbit is exactly the same as in the test configuration on the ground. A recent
measurement from a run of FULLCCD gave standard deviations of 1.85 for NIS1 and 1.61 for NIS2
in unilluminated areas of the detector, once cosmic rays had been filtered out, indicating that the
readout noise is pretty close to what was expected.

To convert from ADC units into equivalent photon-events/pixel, one needs to divide by the
VDS throughput (Table 4 in Software Note #13). Almost all VDS measurements are made at
a voltage of 756V, so the conversion factor is 2.27. Thus, the readout noise varies from 0.62 to
0.83 photon-events/pixel, with the higher range being more likely. A conservative approach would
be to assume a readout noise of 1 photon-events/pixel.

Prior to version 6 (21 February 2019), this document neglected to take into ac-
count the effect of the burn-in correction on the readout noise. When the values in
individual pixels are multiplied by a correction factor to account for the burn-in, the
readout noise is multiplied by the same correction. The amount of burn-in correction
can be derived by applying the routine VDS CALIB with and without the keyword
/NOBURNIN, and taking the ratio. Since the burn-in correction changes slowly in
time, this procedure can be applied once to determine the correction for all observa-
tions close in time. In the discussion below, it is assumed that the parameter R has
been corrected for burn-in.

Taking readout noise into account would modify the estimation of the fractional noise to

fN =

√
2N +R2n

N

where R is the readout noise per pixel (e.g. 1), and n is the number of pixels being summed over.
This assumes that N is a reasonable measure of the number of detected photons. However, when
the light levels are low, then the readout noise will dominate over the photon statistics. Some pixels
could even have an estimated N which is less than zero. A better expression of the fractional noise
would be

fN =

√
2|N |+R2n

N
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Even though N would not be a meaningful value in areas where there are no photons, the concept
of a fractional noise is still useful to help in expressing the noise in the proper units.

3.2 Bias errors

In order to extract the total signal under a line profile, one must first subtract a background level.
There are at least two contributions to this background. The largest is the CCD bias, which is
removed with the routine VDS DEBIAS. There is, of course, an uncertainty associated with the
debiasing which is characterized by the array QLDS.BACKGROUND.STDEV in the quicklook data
structure. Typically this is a little over 1 in ADC units, or ∼0.5 photon-events/pixel. However, for
faint lines the scattered light component cannot be ignored, and the actual uncertainty will depend
on how the background is estimated. It is better to estimate the background uncertainty from the
data than to use the bias uncertainty.

4 Pixel cross-talk

Section 5.2 of the VDS Calibration Report (CDS Software Note #13) talks about the effect of the
detector resolution on the statistics. Any photon which interacts with the detector will affect more
than one pixel on the CCD. This has two effects on the statistics:

1. The statistics in a single pixel is less than that calculated from the N value calculated for
that pixel. This is because the actual number of photons contributing to that pixel is larger
than N , but most photons only contribute a fraction of their energy. As one starts averaging
pixels together, this discrepency is lessened.

2. Features which extend over several pixels, such as a line profile, will appear smoother than
what would be expected from the photon statistics. This will make error estimates based on
curve fitting appear smaller than the true values.

To explore these effects more thoroughly, Monte Carlo simulations were carried out. A simulated
line profile was formed with the expression

I(x) = 0.95e−x2/0.11 + 0.05

where x is in pixels. This expression generates a line profile similar to the profile seen in flight, plus a
background component. In order to simulate the photon detection process, pairs of random numbers
(rx, rI) were generated, with −25 ≤ rx ≤ 25 and 0 ≤ rI ≤ 1. An additional random number rz
was generated with an exponential distribution to simulate the pulse height distribution of the
detector. The exponential distribution was generated by using the keyword GAMMA=1 in the
call to RANDOMN. If rI ≤ I(rx), then the photon signal rz was accumulated into the appropriate
bin. To generate a complete image of a line profile I(x, y), this process was repeated 143 times. A
sample simulated image is shown in Figure 1.

After generating the photons, the smoothing effect of the VDS detector was simulated by
convolving the randomly generated image with a Gaussian smoothing profile given by the formula

k(x, y) = e−(x2+y2)
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Figure 1: Monte Carlo simulated line profile. On the left is the raw simulated data, and on the
right is the same data passed through the convolution kernal shown in Figure 2, to simulate the
effect of the detector resolution.

Figure 2: Convolution kernal used to simulate smoothing properties of NIS detector.
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Figure 3: The equivalent line spread function for the kernal shown in Figure 2.

This convolution kernal is shown in Figure 2, and the equivalent line-spread-function is given in
Figure 3.

First of all, we can confirm that the unconvolved data has the expected statistical properties.
Since each profile along the simulated slit should be identical, we can take the standard deviation
at each x position and compare it to the average. All along the profile, the standard deviation is
approximately

√
2N , where N is estimated from the average. (If we had assumed a perfect pulse

height distribution of rz = 1 for every photon, then the noise would have been
√
N .) Also, the

total along the line has a statistical variation which is also approximately
√

2N tot. When Gaussian
profiles are fitted to the data, with weights of 1/(2N), the χ2 values are close to 1 as expected.

The statistical properties of the smoothed data are quite different. The statistics of each pixel
are 2–3 times smaller than the predicted

√
2N dependence. Each pixel acts as if it had the statistics

of 6–7 times as many photons as would be estimated from the signal alone. When fitting the line
profiles, the resulting χ2 values are significantly less than 1, again by a factor of about 6–7.

The main question is whether this apparent statistical improvement in the data can be translated
into improved determinations of the Gaussian parameters of the fit. If the reduction of χ2 by 6–
7 was really due to improved signal-to-noise, then we would expect that the errors in the fitted
parameters would drop as the square-root, i.e. about 2.5–2.6. However, this does not appear to
be the case. The deviations in the fitted parameters do drop, but only by a factor of 1.7–1.8.
Detailed examination shows that the parameters are not really better determined—they are simply
smoother than the parameters derived from the original raw data. In fact, the same results could
be obtained by simply convolving the parameters derived from the raw, unsmoothed data with the
line spread function shown in Figure 3. This smoothing leads to an apparent drop in the statistical
noise, because the largest deviations are smoothed out. However, the data is not really better
determined—just smoother.
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If the derived Gaussian parameters at a single pixel location along the slit were really better
determined, then the noise in the parameters could be further improved by averaging pixels together.
The noise should drop as 1/

√
n, where n is the number of pixels being averaged together. This

is true for the unsmoothed data, because that data satisfies the necessary condition that the data
being averaged together be independent. However, for the smoothed data, the apparent noise in
the data does not drop as quickly. In fact, as more pixels are averaged together, the noise in the
parameters from the raw and smoothed data converge to the same level of noise.

In conclusion, the Monte Carlo simulations show that the noise in the data is best represented
by the equations given in the earlier sections of this report. Although the smoothing within the
detector makes the data appear to be less noisy than it really is, this cannot be translated into
actual improvements in the measurements. The data is not really less noisy—it’s just smoother.

Note that this is only a simulation. Although qualitatively it is expected to replicate the
behavior of the VDS detector, it is not quantitatively the same as the detector. The details of the
calculation depend strongly on the exact shape of the detector point spread function. Thus, the
above numbers should not be taken at face value. The conclusions are still the same, though.

5 Error in the total intensity

The total intensity in the line can be derived from the peak amplitude A and line width w through
one of the equations

Itot =
√

2πAwg

=
1

2

√
π

ln 2
Awf

depending on whether a Gaussian width (wg) or a full-width-half-maximum width (wf ) is used.
There are two schools of thought on how the errors in the peak intensity and width combine to
form the error in the total intensity. One school of thought holds that the errors are completely
independent, and are simply combined as the sum of the squares, i.e.(

σI
I

)2

=

(
σA
A

)2

+

(
σw
w

)2

Another school of thought is that the fitted amplitude and width are correlated, and that a more
appropriate expression would be (

σI
I

)2

=
1

2

[(
σA
A

)2

+

(
σw
w

)2
]

The Monte Carlo simulations favor the latter school of thought.1

6 Combining fitting and Poisson errors

The proper way to fit CDS spectral data is to weight the data by 1/σ2, where the noise σ is
given by the expression σ = fNS, with S being the signal, and fN being the fractional noise as

1My thanks to Stein Vidar Haugan for first proposing this.
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discussed earlier. The errors on the fitted parameters will be appropriate, even though the χ2 value
is significantly less than 1.

If a different weighting scheme is used, such as constant weighting, then a different scheme would
be necessary to estimate the error. Normally, one might renormalize the errors by adjusting the
weights so that χ2 = 1 (which is equivalent to multiplying the parameter errors by

√
χ2). However,

the Monte Carlo calculations in the previous section show that one should not expect χ2 to be
equal to 1, unless a number of pixels are being averaged together. Renormalizing the errors to set
χ2 = 1 would underestimate the true uncertainty in the data. To some extent, this can be rectified
by assuming that the renormalized error represents the uncertainty of the fit, and then adding in
again the Poisson noise, fNS, in the sense of the sum of the squares, i.e.

σ2 = σrenorm
2 + (fNS)2

However, this only works for estimating the error in the total intensity, and does not allow one to
properly calculate the error in either the line centroid position (wavelength) or line width.
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