CORONAL DIAGNOSTIC SPECTROMETER

SoHO

CDS SOFTWARE NOTE No. 47

Version 2 October 1997

The Component Fitting System (CFIT) for IDL

Version 2
S. V. H. Haugan
Institute of Theoretical Astrophysics
University of Oslo

S.V.H.Haugan®@astro.uio.no

Contents

1 Introduction 3
1.1 Version 2 enhancementso Lo 3

2 Analyzing single spectra 3
2.1 A demonstration with dummy data 3
2.1.1 Adding components Lo 4

2.1.2 Hints for analyzing heavily blended spectra 4

2.1.3 Leaving out/removing components 5

2.1.4 Finishingup o 5

2.1.5 Re-using the designed fit structureo oL 5

2.1.6 Evaluating the fitted function for plottingetc. 5

2.2 X1lib error, IDL process freezes 6
2.3 Nominal vs actual parameter values 6
2.4 Background polynomialsoforder N o L o oo 7
2.5 Fitting broad spectral regions L L o L Lo 7

3 Analyzing blocks of data 8
3.1 CFITBLOCK o e e e et e e e e s e 8
3.1.1 Analyzing simplecaseso 8

3.2 V2: Easy handling — The Analysis Structure CFIT_ANALYSIS 11
3.2.1 Saving and restoring CFIT_ANALYSIS structures 12

3.2.2 Deleting CFIT_ANALYSIS structures oo v v vt v 12

3.3 XCFITBLOCK o i i i e e e e st e e e e e s s e e s 12
3.3.1 An overview of XCFIT BLOCK o v vt v i it et e e e e 13

3.3.2 Tweaking the results, identifying trouble spots 15

3.4 Some hints to cope with difficult datasets 16
3.5 V2: Easy handling — masking and patching points 17
3.6 Working with large datasets o oL 17
3.7 Using the ORIGIN and SCALE keywords 18

4 Useful procedures 18
5 Technical information 19
5.1 Datastructures e e 19
5.1.1 The “short fit” (SFIT) structure 20

5.1.2 Compiled compound procedures (cf_g_..._.pro) 21

5.2 Implementing new componentso e 21

6 Concluding remarks about x? fitting.
A Example skeleton program for analyzing CDS NIS data
B V2: Analyzing CDS data

C Future enhancements

23

24

27

28

1 Introduction

The Component Fitting System is designed to assist anyone using IDL to fit a set of functions to
a data set. It is inspired by what I perceive to be the underlying philosophy of XSPEC!, that the
hard part of complex spectral fitting problems should not be to describe the model being fitted, but
to find starting values leading to the best fit, and to decide which results are sensible and which
aren’t.

Instead of writing many specialized IDL functions, one for fitting a Gaussian with linear back-
ground, one with two Gaussians and constant background or, say, a Voigt profile plus a cubic
background etc. etc., the Component Fitting System is designed to minimize the need for pro-
gramming altogether. In fact, specifying the components to be fitted should be as simple as listing
them up! Then, the user may spend his time worrying about the correciness of the results.

1.1 Version 2 enhancements

A number of new features (most of them in XCFIT_BLOCK) have been added in Version 2 — see
especially Sections 3.2 and 3.5, as well as Appendix B.

Modified paragraphs in other sections have been flagged with a marginal note (V2), like this
paragraph.

I’ve also made it easier to generate one-sigma error estimates in CFIT BLOCK — use XDOC, look
for the SIGMA, MAKE _SIGMA and ERROR_ONLY keywords. Also, look at the program CFIT_ERRDEMO for
a test of the estimated sigmas (based on synthetic data).

2 Analyzing single spectra

One of the main programs in the Component Fitting System is XCFIT, an interactive program for
designing the model to be fitted. It needs three parameters; two arrays X and Y containing the data
to be fitted, and a third parameter containing the component fit structure (CFIT structure).

You should normally also supply an array of statistical weights for each point, being inversely
proportional to the square of the estimated standard error for each point, through the keyword
WEIGHTS.

2.1 A demonstration with dummy data

To start a demonstration run of XCFIT, make sure the three parameters (and the WEIGHTS array)
are undefined, i.e.,

IDL> delvar,x,y,fit,weights
IDL> xcfit,x,y,fit,weights=weights

When the input parameter X is not defined, a dummy spectrum will be created, with a constant
background and three Gaussian components, plus noise. An array with weights to be used in the

!Part of the XANADU software package, see http:heasarc.gsfc.nasa.gov/docs/xanadu/xanadu.html

V2

fitting procedure is also created. The fit structure will be initialized with a zero order polynomial
if it is not defined.

2.1.1 Adding components

Now, move around inside the spectrum/residual plots with the middle mouse button, positioning
the focus point close to the center of the left emission line.

Select [Add component] : [..showing absolute position.]

The middle part of the display is updated to show the new component along with the back-
ground. The program makes some initial guesses for the fit parameters, and the resulting function
is plotted on top of the spectrum. No x? fit has yet been performed with the new component —
press [Redo fit] to improve the fit, and the Value column for each component is updated with the
values at the end point of the x? minimization.

Now, it seems like this is a good fit for this particular line and this particular part of the
spectrum, so we press [Use as initial state|: [(value -> initial)]to store the current values
as initial values for the two components. The initial values are updated on the screen.

We'll also edit the name of the Gaussian component by pressing the button labeled [gauss] —
an XINPUT dialog box appears and we alter the name to e.g., “Left”, since this seems to be the
leftmost component.

Now we focus on the emission line on the right. Move to the position of the peak, and add
another component here.

We’ll see how well this emission feature is matched by a single Gaussian by pressing [Redo fit]
again. Obviously, the result is not very good, and in fact we got a much more “credible” result
with the initial values, revealing the second component of the blend, so we use the [Reset values]
: [(initial -> values)] button to undo the best fit calculation.

Now, move to the peak that’s visible in the residual (should be at about 503.1) and add a third
Gaussian.

Although the results from the initial value guesses could indicate a fourth component, we’ll try
[Redo fit] once first. We see that the residual now reflects mostly noise, and we can name the last
two components e.g., “Center” and “Right”.

2.1.2 Hints for analyzing heavily blended spectra

Concentrate on the most clear-cut parts of the spectrum first. Each time you add a component
and press [Redo fit], use your gut feeling to decide whether the “best fit” is actually good (i.e.,
whether the component now mathches an actual component in the spectrum). If it looks good,
don’t hesitate to press [Use as initial state]. If it doesn’t, don’t press it. Consider instead
adding another component before retrying. This will keep you from straying into a wilderness of
misplaced lines in case adding the next component makes the fitting process freak out. You can
always reset the values whatever the initial values are.

2.1.3 Leaving out/removing components

To visualize the effect of leaving out one of the components, press [Include: ON] to turn a component
off, and see what happens with the resulting fit. If you wish to remove a component permanently,
make sure it shows [Include: OFF|, and then press [Purge components].

2.1.4 Finishing up

When you’re satisfied with a fit model, exit the XCFIT program using [Exit] : [Save changes].
First, however, you should consider pressing [Redo fit] and then use the button [Use as initial
state] : [(value -> initial)]. Do this if you suspect the current values to be better suited as
initial values for further processing (of other, similar spectra) rather than the initial values that
were estimated by XCFIT by guessing.

2.1.5 Re-using the designed fit structure
Now, if you’d like to use the designed fit model inside e.g., a program, use the command:

IDL> print_cfit,fit,/program

This will print out a series of lines that may be inserted directly into an IDL program to
reconstruct the structure describing the fit. The structure is called a component fit structure (a
CFIT structure). Note that the current parameter values stored in FIT will become the new initial
values unless you set /INITIAL flag of the PRINT CFIT routine. The CFIT structure produced by
the printed statements may then be applied to other data sets, in a batch job (with routines CFIT
or CFIT_BLOCK), or interactively (with e.g., XCFIT or XCFIT_BLOCK).

2.1.6 Evaluating the fitted function for plotting etc.
In order to evaluate the function represented by a CFIT structure, use the routine EVAL_SFIT.
Le., after fitting three components to the dummy spectrum and then exiting from XCFIT, do the

following:

IDL> ps,’cfit—dummy-fit.eps’

IDL>
IDL> help,x,y,fit,/str ; Just to show you what we’ve got
X FLOAT = Array(200)
Y FLOAT = Array(200)
** Structure <4011efa8>, 4 tags, length=2944, refs=1:
IGAUSS4 STRUCT -> COMPONENT_STC_3 Array(1)
IGAUSS3 STRUCT -> COMPONENT_STC_3 Array(1)
IGAUSS2 STRUCT -> COMPONENT_STC_3 Array(1)
BG STRUCT -> COMPONENT_STC_1 Array(1)

IDL> eval_cfit,x,yy,fit
IDL> plot,x,y
IDL> oplot,x,yy,linestyle=1 ; Overplot the fitted function

IDL>

IDL> one_gauss = {gauss:fit.(0), bg:fit.bg} ; New CFIT structure with
IDL> eval_cfit,x,yy,one_gauss ; only one gaussian plus the
IDL>oplot,x,yy,linestyle=2 ; background

IDL>

IDL> one_gauss = {gauss:fit.(1), bg:fit.bg} ; The other gaussian of the
IDL> eval_cfit,x,yy,one_gauss ; "blend"

IDL> oplot,x,yy,linestyle=3

IDL> psclose

and the postscript file looks like this:

L1570 N B e

80

60

40

20

504

9
=}
oL
9
[}

2.2 X1lib error, IDL process freezes

For some reason, running XCFIT sometimes causes X1ib errors to occur (at least on DEC Alphas
running OSF UNIX 4.0.1) giving error messages along the lines of “X1ib: unexpected async
reply (sequence 0x20f4)!” or “X1ib: sequence lost” or similar. The reason for this is not
known, as it has proved difficult to establish exactly what triggers it. The only “cure” seems to be
to stop IDL by pressing ~Z and then kill the process. Killing the patient is not considered a great
form of treatment, though.

The frequency of this error has been reduced significantly by inserting a PRINT statement (!) in
one of the XCFIT routines. The error is more easily provoked if you add a component after leaving
your display idle for a while. If you find a way to produce this error consistently, could you please
experiment a little bit more to see if there are any actions that will keep it from happening (like
pushing various buttons before doing something else, or perhaps running any other widget program
first, etc), and report any results to s.v.h.haugan@astro.uio.no.

2.3 Nomunal vs actual parameter values

Notice that the [Add component] menu lets you choose between Gaussian components showing
the absolute line position, or components showing the velocity (in km/s) relative to some lab
wavelength. In some situations representing the line position by it’s velocity makes it easier to
asess the feasibility of a result.

This has been accommodated in the Component Fitting System without having two Gaussian
“component types” as such, by allowing a linear transformation between a parameter’s nominal
value and it’s actual value.

Given the two linear transformation coefficients TRANS_A and TRANS B, the actual value is given
by
Actual = Nominal « TRANS_A + TRANS B (1)

The x? fit is always done with respect to the actual values, and the “presentation” is normally done
in the nominal values.

So, implementing a component showing the line positions as a velocity is simply done by setting

TRANS_A 4+
Ao (2)
TRANSB =)

where the + choice seems to be determined by whether you’re an observer favouring a plus sign,
giving positive velocity when distance increases (use [blueshift <=> negative velocity]) or a
theoretician favouring the minus sign, giving positive velocity when height increases ([blueshift
<=> positive velocity]).

The lab wavelength is initially taken as the position of the focus at the time of adding the
component. This is, of course, seldom exactly the correct value, and you’ll need to adjust the
transformation parameters. TRANS B is the most sensitive, while in most cases the error in TRANS_A
corresponds to an error in ¢ of order one percent or less.

It is of course also possible to measure velocities in furlongs per fortnight if you so desire —
simply express the light speed in these units and plug into Equation 2 above.

2.4 Background polynomials of order N

By default, XCFIT uses a constant background (i.e., zero order polynomial) when the input CFIT
structure is initially undefined. If you wish to use an Nth order polynomial, just define the CFIT
structure before starting XCFIT:

IDL> fit = {bg:mk_comp_poly(N)}
IDL> xcfit,x,y,fit

The MK_COMP_POLY function can create a polynomial component structure of any order. Always
use the tag name “BG” for the background — this is to allow automatic handling of the tag in the
future. The names of other tags are arbitrary.

If you’ve already created your fit structure, you can replace the background by using the function
REP_TAG_VALUE, e.g.,

IDL> fit = rep_tag_value(fit,mk_comp_poly(ll), ’bg’)

This will replace the tag BG with a polynomial component structure of order N.

2.5 Fitting broad spectral regions

When analyzing broad spectral regions, it is sometimes better to fit a smaller part of the spectrum
at a time, because the number of lines becomes very large, because XCFIT becomes sluggish when

dealing with too many data points, or because the background is difficult to fit over a broad spectral
range.

There are (at least) two ways of dealing with this. You may divide your data arrays into
smaller pieces and analyze them separately. Or, you may set the WEIGHTS array to zero outside the
region you're studying at the moment. The first option cures all of the problems. The last option,
however, gives you the benefit of being able to see the adjacent parts of the spectrum while leaving
the background estimate unaffected by non-fitted lines, but it doesn’t speed up the operation of
XCFIT.

3 Analyzing blocks of data

Now that we’ve demonstrated how to analyze single spectra, we’ll take a look at how you can
analyze blocks of data to produce velocity maps etc.

Given a block of data where the first dimension is the dispersion direction, you can use the
programs XCFIT BLOCK and CFIT BLOCK to design and/or apply a fit to the whole data block in one
operation.

3.1 CFITBLOCK

Given a block of spectra in an array with dimensions (LAMBDA X,Y), with corresponding arrays
containing the wavelengths, weights etc, this routine applies a component fit to all the individual
spectra, yielding a resulting array (PARAMETERS,X,Y).

If the wavelength calibration is constant over the whole data array, the array containing the
wavelengths may have only one dimension, of the same size as the first dimension of the data array.

The first dimension of the result will accommodate all parameters (stored consecutively as they
appear in the fit structure) and the x? value (actually, it’s the reduced x* value) of the fit at that
point. That is, for a fit with N parameters, the first dimension will have N + 1 elements.

3.1.1 Analyzing simple cases

Let’s say wish to create analyze the He I 584.334 line window from a CDS NIS Synoptic observation:

IDL> a = readcdsfits("s3920r04")
IDL> xcds_cosmic,a

Removing cosmic rays is always a good thing to ensure sensible results. Inside XCDS_COSMIC,
execute CDS_CLEAN_EXP automatic CR removal, then manually verify the He I window. There’s at
least one partially removed CR at exposure index 27, some pixels at exposure index 61, and some
at 63. Do not fill the missing pixels. When doing line fitting, filling in pixels (at least in the final
analysis) amounts to “inventing” data.

We proceed as follows:

IDL> ; Get a sample spectrum and a wavelength array from the He I window

IDL> ; in one line

IDL> sp = gt_spectrum(a,window=0,xix=30,yix=30,lambda=1am)

IDL>

IDL> ; Now, create a fit structure - adding one gaussian (absolute position),

IDL> ; Press Redo fit, then Use as initial state.

IDL> ;

IDL> xcfit,lam,sp,fit

% XCFIT: WARNING: No weights supplied - constant weights used

% Program caused arithmetic error: Floating underflow

IDL>

IDL> ; Below are the statements necessary to reproduce the fit structure

IDL> ; inside a program, or simply to ensure that you’ll get the same

IDL> ; result in our demonstration case.

IDL> ;

IDL> print_cfit,fit,/program

% Compiled module: PRINT_CFIT.

IGAUSS2 = mk_comp_gauss([68.1385,584.365,0.543508],$
max_arr=[100000,584.769,0.995819] ,min_arr=[0.0001,583.832,0.110647],$
trans_a=[1,1,0.424661],trans_b=[0,0,0],$
const=[0b,0b,0b])

IGAUSS2.name = ’gauss’

BG = mk_comp_poly([1.4854],$
max_arr=[3.40282E+38] ,min_arr=[-3.40282E+38],$
trans_a=[1],trans_b=[0],$
const=[0Db])

BG.name = ’Polynomial’
fit = { IGAUSS2 : IGAUSS2,$
BG : BG}

<The output from print_cfit contains a lot of stuff that’s not really
necessary to our particular example. In fact, the following will do: >

IDL> fit = { igauss2:mk_comp_gauss([68.1385,584.365,0.543508]),%

IDL> bg:mk_comp_poly([1.485]) }
IDL>

IDL> ; Fetch data array from QLDS

IDL> ;

IDL> da = gt_windata(a,0)

IDL>

IDL> ; Form some kind of statistical weight array - notice that negative
IDL> ; weights would have quite weird implications - the fit would get
IDL> ; better as the ''negative'" weighted errors get bigger!

IDL> ;

IDL> wts = 1./(da > 1)

IDL>

IDL> ; Now we do the fitting. Notice that the wavelength tilt is not
IDL> ; compensated in this example. -100 is the value for MISSING points.
IDL>

IDL> cfit_block,lam,da,wts,fit,-100,result,residual,/double

<CFIT_BLOCK will inform about it’s processing by printing the percentage
done once in a while. Note that processing can take quite a while -
maybe this is a good time to get that cup of coffee?>

100%
IDL> help,result,residual

RESULT FLOAT
RESIDUAL FLOAT

Array(5, 120, 143)
Array(18, 120, 143)

IDL> ps,’cfit-he-1.eps’,/encapsulated

IDL> 1P.multi = [0,3,2]

IDL> setflag,missing=-100

IDL> plot_image,reform(result(0,*,*)),title="Intensity’

IDL> plot_image,sigrange(reform(result(l,*,*)) ,frac=.999),title="Position’
IDL> plot_image,sigrange(reform(result(2,*,*)),frac=.999),title=’"Width’

IDL> plot_image,sigrange(reform(result(3,*,*)),frac=.999),title="Background’
IDL> plot_image,sigrange(reform(result(4,*,*)),frac=.999),title=’Chi~2’
IDL> psclose

The resulting postscript file looks as follows:

te

Positi

The reason for using SIGRANGE is that at some points in the data structure, the fit may not
converge very well, so the results may be off. This is usually caused by cosmic ray hits in positions
that make constraining the position/height /width of a line difficult, or by having just too poor
signal /noise ratio to constrain a line’s position/width parameters reliably. Also, at some positions,
there are simply not enough valid data points (due to cosmic ray hits) to make a valid fit.

You may also notice the north-south gradient of the line position caused by the NIS line tilt.

It is possible to supply a “suggestion” result array to CFIT_BLOCK. The supplied results will then
be used as initial values for the fit at each point, unless the keyword USE_RESULT is explicitly set
to zero. If defined, the RESULT array should have the same size on input as it will have on output,
i.e., taking into account that one extra “slot” is used for the x? value.

It is also possible to supply CFIT BLOCK with arrays controlling where specific components
should be turned “off” (INCLUDE), and where specific parameters are to be kept constant (CONST).
The first dimension of these arrays should be of size N.COMPONENTS and N PARAMETERS,
respectively. The relationship between the CFIT structure and the RESULT, CONST, and INCLUDE
arrays can be illustrated with the following sketch:

10

{CFIT}
GAUSS!] AMPLITUDE |
POSITION ... ||
WIDTH. ... |
GAUSS2 AMPLITUDE |
POSITION ... ||
WIDTH. ... |
BG CO |

CONST

INCLU

3.2 V2: Easy handling — The Analysis Structure CFIT ANALYSIS

With version 2 of the Component Fitting System, the concept of an analysis structure (CFIT_ANALYSIS)
has been introduced. It is a structure containing everything associated with the analysis of a block

of data in CFIT (as well as some auxiliary information that’s used by e.g., XCFIT_BLOCK).

To create an analysis structure containing the data, weights, etc., use e.g.,

IDL

> ana = mk_analysis(lam,da,wts,fit,-100)

IDL> help,lam,da,wts

UNDEFINED
UNDEFINED
UNDEFINED

IDL> help,ana,/str
** Structure CFIT_ANALYSIS,

Note that the input variables to MK_ANALYSIS have become undefined (you may avoid this by
setting the keyword NO_COPY=0 in the call). For more information on the use of MK_ANALYSIS, look

FILENAME
DATASOURCE
DEFINITION
LABEL
HISTORY_H
LAMBDA_H
DATA_H
WEIGHTS_H
FIT_H
MISSING
RESULT_H
RESIDUAL_H
INCLUDE_H
CONST_H
ORIGIN_H
SCALE_H

PHYS_SCALE_H

DIMNAMES_H

STRING
STRING
STRING
STRING
LONG
LONG
LONG
LONG
LONG
DOUBLE
LONG
LONG
LONG
LONG
LONG
LONG
LONG
LONG

<Undefined>
<Undefined>
<Undefined>

18 tags, length=128:
bR

2

2

2

801
802
803
804
805

-100.00000

806
807
808
809
810
811
812
813

at the on-line documentation with XDOC.

With the analysis structure initialized as above, the call to CFIT_BLOCK is considerably less

cumbersome than in the previous section:

IDL> cfit_block,analysis=ana,/double

11

;; Can be shortened, e.g.,

...block,ana=ana

All the data blocks associated with a CFIT_ANALYSISare stored using handles; to get to the
arrays use e.g.,

IDL> handle_value,ana.data_h,data ; Fetch the data cube
IDL> handle_vlaue,ana.result_h,result ; Fetch the result cube

3.2.1 Saving and restoring CFIT ANALYSIS structures

Since handles are used in the CFIT_ANALYSIS structures, using the standard IDL commands SAVE
and RESTORE will not save and restore the arrays associated with the structures.

Instead, you should use the routines SAVE_ANALYSIS and RESTORE_ANALYSIS, e.g.:

IDL> ana.filename = ’my_analysis.ana’
IDL> save_analysis,ana

IDL> ana = restore_analysis(’my_analysis.ana’)

If the CFIT_ANALYSIS tag FILENAME is an empty string, a PICKFILE widget will appear to let the
user select a file name. This also happens when RESTORE_ANALYSIS is called without any arguments.

It is possible to restore/revert to the “last saved” version of an analysis structure by using

IDL> ana = restore_analysis(ana)

3.2.2 Deleting CFIT ANALYSIS structures

To make sure that the storage space and the handles are freed when throwing away an analysis
structure, use DELETE_ANALYSIS to delete it.

3.3 XCFITBLOCK

Since x? fitting methods are always “local” in the sense that they’ll only find the best fit if the initial
values are fairly close to the optimal solution, one cannot expect to ever have any fully automatic
method that will work in all cases. The program XCFIT BLOCK allows the user to view results of the
fitting process and manipulate starting values etc at “trouble spots”, so as to (perhaps) eliminate
all non-sensible results.

With the results from the previous section, start XCFIT BLOCK with
IDL> xcfit_block,lam,da,wts,fit,-100,result,residual,inc,const
or, with a CFIT_ANALYSIS structure, simply

IDL> xcfit_block,analysis=ana ; Can be shortened, e.g., xcfit_block,ana=ana

where INC and CONST are used to store information on where specific components are left out and
where specific parameter values are to be kept constant.

12

V2

3.3.1 An overview of XCFIT_BLOCK

When you start XCFIT_BLOCK it looks approximately like this:

Color table selection
and manipulation

"Microplot"” Command huttons/menus

Error bars on/off.....

3 IR

. CONST
Status: INCLUD

status

Displayed result
selection

N

N

N
N
N
\

Image dimension
selection

Plot dimension
selection

Main display columns (raw data, one result parameter, residual)

The three main display columns in the bottom part of the display are, from left to right, the
original data, the fit result (one parameter shown at a time), and the residual data array.

You may view the data cubes in any way you like, try pushing the buttons just above the image
displays to change the dimensions currently displayed, or the button just above the profile plots to
change the dimension being plotted (image dimension selection/plot dimension selection).

To move around in the displayed data, use the middle mouse button to click on the displayed
images or plots. To move one pizel at a time, click outside the image/plot boundary. All the display
columns will be focused on the same physical point in the data cubes even though the displayed
dimensions may vary. To zoom out/in, use the left /right buttons.

To view different result parameters in the middle column, select from the pulldown menu
[Result:...].

To the left in the widget are two status columns showing the INCLUDE and CONST values for all
the components/parameters. Each group of “buttons” represents one component - a component
is included if the checkbox (left) is checked, and a parameter is constant if it’s crossed out. You
may alter the status by clicking on the buttons.

The left status column shows the global, default values. The right status column reflects the
status at the current point - if you move around in the data block, the status will be changed.

13

V2

V2

The CONST box corresponding to the currently displayed result parameter is also highlighted
in the status columns on the left.

To the left of the command buttons is a “microplot” window, showing the spectrum at the
current point, with the currently fitted function on top, as well as error bars. This is a “quick
glance” at how well the fitting process has managed to fit the data. You may zoom in/out/refocus
with the right/left /middle mouse buttons. The error bars may be turned on and off by pressing
the [Errplot:..]| button.

Some of the command buttons are:

[File/exit] save/restore options
The options [Save], [Save as..], [Restore last saved] and [Restore other] deal with saving and
restoring the current analysis result through SAVE ANALYSIS/RESTORE ANALYSIS.

[File] : [View/edit History]
This option allows editing the analysis “history”, which is a text array on the handle HISTORY H in the
CFIT_ANALYSIS structure. The history is saved/restored along with the other elements in the analysis
structure.

[Adjust] : [Adjust (global) MIN/MAX values, names etc]
This button starts XCFIT in the same mode as when you press [View/tweak], but if you alter the
MIN/MAX values, or the component names, variable names etc, this will be permanently changed in
the fit structure. If you alter the status of the constant flag (CONST) for any parameter, you will be asked
whether the new status should be applied to all points in the data cube. Also, you should be aware
that if you leave components flagged with non-included components, or with constant parameters, this
will be imposed on all the data array points when you do a recalculation from global initial values.
You may, however, not add, remove or change the order of any components when selecting this option.

[Adjust] : [Update (global) initial value for...]
This option allows modification of the initial value for the currently displayed result — it may be set to
the median or the average of the current result. Only valid (non-failed), fitted (non-constant) values
are taken into consideration.

[Redesign] : [Discard all results, redesign fit structure]
Use this button to start XCFIT in the “normal” mode where you can change the CFIT structure by
adding, removing (purging), and sorting components. This will, however, leave XCFIT_BLOCK in the blue
as to which parts of any calculated results correspond to which components/parameters; Unless you use
exit options [Flag as FAILED/IMPOSSIBLE] or [Discard changes] to leave the structure completely
unchanged, all results and residuals will be discarded.

[Calculate] : [Recalculate based on current result]
This option runs CFIT BLOCK over your data, using the current RESULT, INCLUDE and CONST arrays as
input. Normally, it’s quicker to recalculate a fit from current results than to recalculate from global
initial values (since the starting points will normally be much closer to the final values).

[Calculate] : [Recalculate from global initial values]
This option runs CFIT BLOCK over your data, after resetting the current RESULT, INCLUDE and CONST
arrays to contain the INITIAL value and INCLUDE/CONST values of the current fit structure. Normally,
it’s quicker to recalculate a fit from current results than to recalculate from global initial values (since
the starting points will normally be much closer to the final values).

[View/tweak]
Pushing this button starts XCFIT, showing the data and the corresponding fit from the current point
in the data array. You can modify permanently the INCLUDE and CONST status for any compo-
nent/parameter for this point. You may also adjust the MIN/MAX limits, INITIAL values etc to
circumvent problems with finding a good fit, but these values are not stored individually for each
point, and will revert to the global values stored in the original CFIT structure.

14

V2

V2

V2

V2

V2

[FAIL]
If the fitting process for any reason (like cosmic rays etc) breaks down completely at some point,
and no tweaking of initial values etc can produce a good fit, you can declare the fit at this point as
FAILED. This will flag the values of all the result parameters with the MISSING value, and at the
same time declares all the variables as constant at this point. This will also signal to CFIT_BLOCK that
it should not worry about trying to fit this point again.

[Find: ...]

This pulldown menu (and the [..next] button next to it) is useful for finding “odd” points where
some aspect of the fitting process has gone wrong. Selecting e.g., [Find max value] will jump to the
point with the highest value for the currently displayed result. Pressing [..next] will jump to the next
highest value, etc.

Note that points where CFIT_BLOCK failed to converge are marked by a x?2 value of zero - they are thus
easy to find by displaying the x? value and then finding all zero points.

[Mask/patch points]
This pulldown menu provides a way of selecting points in the data block with special characteristics
(high or low S/N ratio, many MISSING pixels etc) — and then applying various “patches” to those
points. See Section 3.5 for a short discussion — also try selecting [Mask/patch points]: [Edit masking
program| from the menu.

3.3.2 Tweaking the results, identifying trouble spots

Returning to our example, select [Result:..] : [gauss] : [Width]. This will make the middle
column display the width of the fitted Gaussian. To find extreme values, which often indicate that
something is wrong, select [Find: ..] : [Find max value|. The program should now jump to
the point (27,43).

Adjust the image dimensions of the original data column to show [Lambda] x [Y]. We see that
this data point is positioned at a cosmic ray hit, providing very few points to constrain the Gaussian
parameters. Press [View/tweak| to start XCFIT with the spectrum taken from this point. It appears
difficult to fit this spectrum without having a somewhat high value for the line width. The result
is (probably) not valid — some of the pixels included in the fit are probably affected by the cosmic
ray. When you exit XCFIT you should use the option [Flag as FAILED/IMPOSSIBLE]. This will flag
all the results at this point (and the residual) as MISSING.

The result at the current focus point can also be flagged as failed by simply pressing [FAIL],
without starting XCFIT.

Another option is to make the line position and/or width constant at this point — i.e., fixing
the width position/width at the global initial value (assuming that this is a good approximation).
this may be done either in XCFIT or by modifying the local CONST status directly in the status
columns on the left.

With more complicated line fitting involving multiple components, failures in the fitting process
are more common. There are several ways of identifying them.

One method is to select the [Result:..] : [Chi~2] to display the x? results. First of all, if the
fitting process fails (as detected by MCURVEFIT) at some point, the x* value of that point will be
set to zero, which is lower than any possible “physical” value. Select [Find: ..]:[Find zero] to
find the first point where the x? result is zero (and [..next] to find the next one that’s zero, etc).

15

V2

V2

V2

V2

V2

Try adjusting e.g., initial values so that the fit converges. When you use [View/tweak]|, the
initial values are adjusted only temporarily, and for this particular point only. When you exit
XCFIT, only the parameter values and the status of individual components/parameters (INCLUDE
and CONST) are stored.

Some times, the min/max values of the line position must be narrowed in to avoid the line
jumping outside the spectrum during the line fitting process.

In XCFIT, if you’re satisfied with the result, use the [Save changes] exit option. If you’ve
fumbled the initial values etc and would like to start over, use the [Discard changes] exit, and
restart XCFIT. If it seems like a lost cause for some reason (like CR hits), flag the fit as failed.

Some types of failures cannot be identified by simply looking at the x? values. Some times, like
when there’s too little signal to constrain a Gaussian, the line position and width ends up with
values that makes the line cover only one or two particularly “noisy” pixels. These situations can
often be spotted when viewing the Gaussian widths.

The process of identifying and correcting these “misfits” is definitely one of the most time-
consuming parts of making useful analysis results. The programs described here will hopefully
speed up the process a lot, though.

3.4 Some hints to cope with difficult data sets

“Difficult” data sets typically have

e Close blends, and often at the same time:
o Few pixels/degrees of freedom relative to the number of parameters to be fitted.
¢ Signs of multiple flows in some places, but not everywhere

¢ Components that are impossible to ignore in some places but vanishingly small in other places

Some techniques have proven to be useful when working with difficult data sets giving lots of
wrong, or nonsensical results.

Try to freeze the line widths and positions of “weak” lines at reasonable values (use [Adjust])
by setting the initial values, and switching them to Fit:0FF). Ignore the question about whether
or not to apply the CONST changes. Any answer will do, because the next thing you should do is to
recalculate from global initial values.

Then, press [Adjust] and un-freeze (thaw) the line position. When you exit XCFIT after doing
that, you should answer yes to the question about applying the changes to all points. Now, do a
recalculation from current values.

Finally, try thawing up the line width as well. This procedure often cures the problem of a
Gaussian shrinking in width to “eat up” one or two pixels that are simply above average due to
noise. Some times leaving the line width in a frozen state is the best thing — you can’t really use
the results for anything, anyway, but you avoid “noise” in the maps of the width and position
parameters.

In other situations, the best thing is to apply the constraints to your data manually. E.g.,
wherever a line amplitude is below a fixed threshold, set the width/position to “good” values

16

and freeze them only at those points, redo the fit calculation from current results, then thaw the
parameters if you wish etc.

To do such manual operations, the following example may be useful:

IDL> xcfit_block,lam,da,wts,fit,-100,result,residual,inc,const

IDL>

IDL> ; We’ve discovered the problem, and found that the first component
IDL> ; gives nonsensical results for the width/position parameters when
IDL> ; the amplitude goes below about 6

IDL>

IDL> ; Find the points spelling trouble

IDL> ix = where(result(0,*,*,..) 1t 6 and result(0,*,*,..) ne —100)
IDL>

IDL> ; Patch those points

IDL> cfit_bpatch,result,ix,1,0
IDL> cfit_bpatch,result,ix,2,0.56
IDL> cfit_bpatch,const,ix,1,1b
IDL> cfit_bpatch,const,ix,2,1b
IDL>

IDL> xcfit_block,lam,da,wts,fit,-100,result,residual,inc,const ; Done!

velocity set to zero

width

Freeze the velocities at those points
and the widths

>
>
>
>

Notice that some times blended components switch their identities during the fitting process.
This can be detected manually by checking the absolute line positions, and then corrected by
swapping all the line parameters for the two lines at those points.

3.5 V2: Easy handling — masking and patching points

With version 2 of the Component Fitting System, patching the result as in the previous section may
be done from within XCFIT_BLOCK. The options under the [Mask/patch points]menu allows you to
edit a program defining a mask that includes “special” points in the data sets. Press [Mask/patch
points] : [Edit masking program| to edit the program. When you are editing the program (in
XTEXTEDIT) you may push the button [Test program|to see what points are masked by the current
program (they will be flickered).

After editing the program, the mask is calculated, and will only be calculated again when you
press [Re-execute masking program]. Now, select options from the [Patch masked points]menu
to manipulate the RESULT, INCLUDE and CONST status for those points.

The patching is done based on the global status stored in the fit structure - you may want to
use e.g., [Adjust] : [Adjust (global) MIN/MAX values..| before actually doing the patching —
or modifying the INCLUDE or CONST value by clicking on the buttons in the status column to the
left.

3.6 Working with large data sets

Since recalculations for large data sets often take quite a while, it is often convenient to undersample
your data set while testing out various strategies for analyzing the data.

I.e., if you have a 3-dimensional data set, and undersample each “physical” dimension by a
factor of two (not the wavelength dimension), then the recalculation time for the “working” data
set will be one fourth of the original, but you’ll still see examples of the most typical problems of
this data set.

17

For one example on how to undersample your data set, see the skeleton program in Appendix A.
In some cases you may, of course, want to undersample only one of the dimensions, not all of them.

3.7 Using the ORIGIN and SCALE keywords

To display data cubes with correct wavelengths, positions, pixel sizes, times etc. in the image
display section of XCFIT BLOCK, use the ORIGIN and SCALE keywords. They have the same meaning
as in e.g., PLOT_IMAGE, but they must always have as many dimensions as the supplied data array.

Using the SCALE keyword you can get correct pixel sizes in cases where the spatial resolution is
different in different directions.

In order to avoid scaling displayed pixels based on e.g., wavelength vs physical position, however,
an extra keyword called PHYS_SCALE must be used. If you have e.g., a data set with dimensions
(LAMBDA, SOLAR_X, SOLAR_Y) where the SOLAR_X spacing is twice the SOLAR_Y spacing,

use SCALE=[0.23,2,1] and PHYS_SCALE=[0b,1b,1b]. This signals that the wavelength scaling
factor should not be used against the two other scaling factors.

The ORIGIN, SCALE, and PHYS_SCALE values are supplied through handles ORIGIN H, SCALE H
and PHYS_SCALE H in the CFIT_ANALYSIS structure. You may also supply dimension names in the
form of an array of strings through the handle DIMNAMES H.

4 Useful procedures

The Component Fitting System involves a large number of functions/procedures, but only a few of
them are of relevance to the users. The most important procedures are:

CFIT
This is the routine used to calculate the best x? fit of the function described by FIT to the
data given in (X,Y).

XCFIT
A “front end” to CFIT(), allowing design and modification of the FIT structure.

CFIT_BLOCK
A “batch” procedure to apply a component fit to a block of data in one operation. The first
dimension of the data array (DA) should be the dispersion direction.

XCFIT_BLOCK
A “front end” to CFIT BLOCK visualizing the original data, the results, and the residuals to
help identify points where the fitting process does not converge well.

PRINT CFIT
Prints out the “current content” of a CFIT structure, with one line per parameter, or as a
set of IDL statements to be included in programs.

EVAL CFIT
Evaluates the function described by a CFIT structure according to it’s current contents.

18

V2

CFIT BPATCH
Shortcut used to manipulate a set of points in RESULT, CONST or INCLUDE arrays. See the
example in Section 3.4.

UPDATE CFIT
Update the VALUE tags of the component parameters in a CFIT structure from an array of
values.

SORT_CFIT
Sort some of the components in a CFIT structure on the (actual) value of a given parameter,
in ascending or descending order. Also used to purge non-included components.

MK_COMP_<name>
Makes a structure for component type <name>.

For a more detailed explanation on the use of each routine, use e.g., XDOC to look at the
documentation headers of each routine.

5 Technical information

The Component Fitting System (CFIT) is extremely flexible, allowing any number of components
with any number of parameters to be fitted simultaneously. Virtually any type of component can
be implemented and used in combination with other types of components.

5.1 Data structures

At the heart of the system is the component fit structure (CFIT structure), which has one tag for
each component in the fit.
The tags desribing the components are themselves component structures, with the following

tags (shown for a Gaussian component, which has 3 parameters).

** Structure COMPONENT_STC_3, 7 tags, length=840:

NAME STRING ’gauss’

FUNC_NAME STRING ’comp_gauss’

FUNC_STRING STRING ‘g’

MULTIPLICATIVE BYTE 0

INCLUDE BYTE 1

DESCRIPTION STRING Array(10)

PARAM STRUCT -> PARAMETER_STC Array(3)

The NAME is the name (nothing to do with it’s {ype) of this component, which can be edited
by the user (e.g., “He I” etc). The FUNC_NAME is the name of the function that will evaluate a
component of this type. This function is written to the specifications set forth in the CURVEFIT
procedure.

The FUNC_STRING tag has to be a (preferably short) string which is unique (one for each com-
ponent type). It is used to compose the name of a procedure that evaluates and adds together the
components of a fit.

19

The tag MULTIPLICATIVE is reserved for future use with multiplicative components (like absorp-
tion etc). When nonzero, the value will indicate the number of preceeding components that should
be multiplied with the results of this component.

The INCLUDE tag is set to zero when the component is turned off, i.e., when the result of this
component should not be added to the sum making up the combined fit.

The DESCRIPTION simply contains a 10-line description of the component.
The tag PARAM contains the specification of each parameter for this component. PARAMETER STC

is as follows:

** Structure PARAMETER_STC, 9 tags, length=208:

NAME STRING ’Amplitude’
DESCRIPTION STRING Array(10)
INITIAL FLOAT 27.9153
VALUE FLOAT 78.15625
CONST BYTE 0

MAX_VAL FLOAT 100000.
MIN_VAL FLOAT 0.000100000
TRANS_A FLOAT 1.00000
TRANS_B FLOAT 0.00000

The NAME and DESCRIPTION tags should be obvious. The CONST tag is nonzero when the param-
eter is kept constant, the other tags are used to store initial values, current values, max/min values
(as nominal values). The TRANS_A and TRANS B tags contain the linear transformation coefficients
between the nominal and actual values (see Section 2.3).

5.1.1 The “short fit” (SFIT) structure
A “short fit” (SFIT) structure is an anonymous structure used internally in the Component Fitting
System, as an intermediate level in the evaluation of a CFIT structure, to speed up the execution

of the fitting procedures. It consists of the following tags:

** Structure <400eaee8>, 13 tags, length=168, refs=1:

COMPILEDFUNC STRING ’cf_g_p0_°
COMPILED BYTE 0
FUNCTS STRING Array(2)
MULTIP BYTE Array(2)
INCLUDE BYTE Array(2)
N_PARMS LONG Array(2)
A_ACT FLOAT Array(4)
ACT_INITIAL FLOAT Array(4)
TRANS_A FLOAT Array(4)
TRANS_B FLOAT Array(4)
MAX_ARR FLOAT Array(4)
MIN_ARR FLOAT Array(4)
CONST BYTE Array(4)

The COMPILEDFUNC tag contains the name of the compound IDL procedure that may be used
to evaluate the compound fit (if/when the compilation has been performed successfully). The
COMPILED tag is Ob if the procedure has not been written and compiled, 1b if the compilation has
been done successfully, or 2b if the compilation somehow failed (to avoid futile retries).

20

5.1.2 Compiled compound procedures (cf_g_..._.pro)

The Component Fitting System includes a procedure (COMPILE SFIT) that is able to write and
compile IDL procedures for evaluation of functions with any combination of components. This is
done whenever possible to avoid the overhead of interpreting a structure each time a fit is to be
evaluated.

The FUNC_STRING tag in the component structure is used to compose the name of such a
compound procedure. Given that the FUNC_STRING for a Gaussian component is “g”, and for a zero
order polynomial it is “p0”, a component fit structure consisting of 3 Gaussians and one zero order
polynomial (in that order) corresponds to a procedure called CF_G_G_G_PO_, written according to

the specifications of CURVEFIT.

If the environment variable IDL_COMPILE DIR is set, the procedure will be written to that
directory (which should, of course, appear in your !PATH). Otherwise, the procedure will be written
in the current directory.

Since no extra information is passed on to these compound procedures, they cannot be used to
evaluate a fit with one or more components turned off (i.e., INCLUDE=0). In such cases, (or in cases
where compilation does not succeed), the function EVAL_SFIT is used to evaluate the fit, based on
the contents of the corresponding SFIT structure, for a given set of parameter values. The loss of
speed is on the order of ten percent.

5.2 Implementing new components
As mentioned previously, it’s fairly easy to add new types of components to the Component Fitting
System, and to mix them with other component types in any way you like.

Let’s say we want to add a component type VOIGT, i.e., a line with a Voigt profile instead of a
simple Gaussian — taking four parameters. To implement the new component type, two steps are
required:

First, write a procedure that will evaluate a component of this type. The name for this procedure
should be COMP_VOIGT. It should follow the requirements of any CURVEFIT “function”. Le., it should
be a procedure accepting parameters X, A, F, and an optional parameter PDER. See the CURVEFIT
documentation for further information.

Second, create a procedure called MK_COMP _VOIGT that creates a component structure describing
a Voigt component. MK_COMP_VOIGT may use the routine MK_COMPONENT STC to create the basic
structure (with 4 component parameters). All MK_COMP_<cname> functions should accept (at least)
the following parameter and keywords:

VALUE: The (only) parameter, an array containing the nominal values for all the parameters.
TRANS_A: The linear transformation A coefficients for all parameters.

TRANS B: The linear transformation B coeflicients for all parameters.

MAX_ARR: The array of maximum nominal values.

MAX_ARR: The array of minimum nominal values.

21

CONST: An array with the CONST status for all the parameters.

The supplied values (if present) should be inserted into the component structure.

Also, the routine should initialize the tags FUNC_NAME ("comp_voigt") and FUNC_STRING (e.g.,
"v" for a Voigt profile). Likewise, it should insert clear DESCRIPTIONs of the component as a
whole, and each of the parameters, so that there is no confusion as to the exact meaning of the
parameter values (include e.g., assumptions about units etc if necessary, or a formula showing how
the parameters are used.)

When this is done, the new component type is ready for use. Note that this includes the
use of e.g., PRINT CFIT,..,/PROGRAM, as long as the function naming conventions are followed.
Some modifications of the XCFIT program will be needed, however, to allow addition of the new
component type through the [Add component] menu.

22

6 Concluding remarks about ? fitting.

Having presented a package for x? fitting, this would be a good place to state some of the require-
ments that should be fulfilled in order to take the results of a x? fit at face value.

First of all, it is assumed that all your data points y; contain “true” values y(z;) (for a given
set of model parameters), plus Gaussian noise with a given standard deviation o; (which may vary
from point to point, of course). Under this assumption, the result of a x? fit gives you the most
likely values of the model parameters, as long as the global x? minimum has been found. So far so
good.

But these assumptions lead to the following conclusions: If you’ve found the “correct” model
for your data, you should be able to retrieve an estimate of the gaussian noise by subtracting the
model from your data. Le., the residuals r; = y(;) — y; should be featureless, with no systematic
structure other than a varying amplitude, reflecting the variations in the standard deviation of the
noise. The normalized residuals, n; = I+ should, strictly speaking, be “white” noise with an overall
standard deviation of one. '

23

A Example skeleton program for analyzing CDS NIS data

Note: This method 1s now outdated, but 1t 1s included for “educational pur-
poses” — see Appendiz B for a better method

Below is an example program which is quite useful as a skeleton for an analysis “session”. It is a
“main” program in it’s own right, to use it (assuming it’s stored under the file name setupan.pro)
simply write

IDL> a=readcdsfits(<filename>)

IDL> xcds_cosmic,a ; Remove CR

IDL> win=0 ; Analyze first window in a

IDL> .run setupan

IDL> xcfit_block,lam,da,wts,fit,-100,result,residual,include,const

and that’s it. The variables LAM, DA and WTS are initialized, and the other variables are left
undefined. The program is available at: http://www.ulo.no/ steinhh/setupan.pro.

http://www.uio.no/ steinhh/setupan.pro

Extract data from QLDS called "a'". Assumed to be debiased and
cleaned for cosmic rays

"win" must contain the window number of the window to be analyzed
"sub" may contain the downsampling factor

>

; Routine for downsampling (up to 4-dimensional) data blocks

PRO downsamp,da,sub,missing
sz = size(da)

; Final sizes of 2nd, 3rd (4th) dimension after resampling
fsz = (sz(2:52(0))/sub) > 1
IF sub GT 1 THEN BEGIN
;; Subsample FIRST dimension by averaging
ix = lindgen(fsz(0))*sub
dad = [da(*,ix,*,*),da(*,ix+1,*,*)] ;; Sub *must* be > 1...

FOR ii = 2,sub-1 DO dad = [dad,da(*,ix+ii,*,*)]

dad = dimreform(dad, [sz(1),sub,fsz(0),sz(3:52(0))])
da = average(dad,2,missing=missing)

;; Subsample SECOND dimension by averaging

iy = lindgen(fsz(1))*sub

dad = [da(*,*,iy,*),da(*,*,iy+1,%*)]

FOR ii = 2,sub-1 DO dad = [dad,da(*,*,iy+ii,*)]

IF sz(0) EQ 4 THEN dad = reform(dad,sz(1),sub,fsz(0),fsz(1),sz(4)) $
else dad = reform(dad,sz(1),sub,fsz(0),fsz(1))

da = average(dad,2,missing=missing)
;3 Subsample DEL_TIME dimension if present
if sz(0) eq 4 then begin

it = lindgen(fsz(2))*sub

dad = [da(*’*’*’it)’da(*’*’*’it+1)]
FOR ii = 2,sub-1 DO dad = [dad,da(*,*,*,it+ii)]

24

dad = reform(dad,sz(1),sub,fsz(0),fsz(1),fsz(2))
da = average(dad,2,missing=missing)
end

END
END

if n_elements(win) ne 1 then message,"WIN must contain window number"
da = gt_windata(a,win)

>

; This is the sampling factor (set to e.g., 2 when testing)
if n_elements(sub) ne 1 then sub = 1

downsamp,da,sub,-100

>

; The calculation of weights have to be modified for calibrated data
wts = 1./(da > 1)
;; Assuming "a" contains non-calibrated data, the following lines

;; may be used to analyse calibrated data, with correct weights except
;; for an overall scaling factor.

IF keyword_set(calibrate) THEN BEGIN
print,"Using calibrated data"
aa = copy_qlds(a)
vds_calib,aa

med_uncalib = median(da(where(da NE -100)))

da = gt_windata(aa,win)
delete_qlds,aa

downsamp,da,sub,-100

med_calib = median(da(where(da NE -100)))

print,"Calibration factor:"+trim(med_calib/med_uncalib)
END

sz = size(da)

if sz(0) eq 4 then begin

detx = a.detdesc(win).detx + dimrebin(lindgen(sz(1),1,1,1),sz(1:4))

dety = a.detdesc(win).dety + dimrebin(lindgen(1,1,sz(3),1)*sub,sz(1:4))
end else begin

detx = a.detdesc(win).detx + dimrebin(lindgen(sz(1),1,1),s2(1:3))

dety = a.detdesc(win).dety + dimrebin(lindgen(1,1,sz(3))*sub,sz(1:3))
end

;; Which detector are we using?
det = ([’N1’,’N2°]) (a.detdesc(win) .dety LT 512)

; Calculate tilt for all pixels - values taken from TILT_NIS1_DEMO and
; TILT_NIS2_DEMO

IF det EQ °N1’ THEN tilt
ELSE tilt

0.0075942d - 6.135603e-6*detx $
0.00397 - 4.763135e-6*detx + 4.764016e-9 * detx"2

;3 Find the median detector y position - use as zero point for tilt correction

25

med_dety = median(dety(0,0,%))
ndetx = detx + (dety-med_dety) * tilt
lam = float(pix2wave(det,ndetx,/nolimit))

END

26

B V2: Analyzing CDS data

In order to extract and analyze a data window from a CDS QLDS called “a”, simply use the
following statements:

IDL> ana = mk_cds_analysis(a,window_i [,downsampling] [CALIBRATION FLAGS])
IDL> xcds_analysis,ana=ana

and simply start building the fit structure from scratch. See XDOC,’MK CDS_ANALYSIS’ for a
description of how various calibration flags are applied.

Another option is to use XCDS_ANALYSIS, which lets the user define a CDS “Analysis Definition”
(ADEF) - allowing multiple windows to be analyzed as one block, (semi-)automatic cosmic ray
handling, etc. The calling sequence is:

IDL> xcds_analysis,adef,ana,qlds=a

XCDS_ANALYSIS may be invoked from DSP_MENU as well.

Once an ADEF has been designed, it may be applied to other data sets simply by referring to
them by their fits file names, e.g.,

IDL> ana = apply_cds_adef(adef,’s4747r00°)

(assuming, of course, that READCDSFITS is able to find the fits file in question).

Analysis definitions use handles, and should therefore be saved /restored/deleted by using SAVE_CDS_ADEF
RESTORE_CDS_ADEF, and DELETE_CDS_ADEF respectively.

27

C Future enhancements

This section is more or less a list of “things to do” for the future, included here so that anyone
willing to spend time making improvements to the Component Fitting System knows at least some
of my intentions. If anyone has further ideas, or would like to do some work, please contact me.

In no particular order:

e It would be nice to have visual warnings in XCFIT when max/min limits are touched

¢ Automatic undersampling on/off in XCFIT BLOCK — would also have option to CONGRID the
undersampled result to full size, and then recalculate from those values.

¢ Multiplicative components. As it is, the Component Fitting System only encompasses additive
components (although components may have negative values, of course). But it would be
nice to have true “absorption” components, multiplying emission components with a value
between 1 and 0.

This is possible to implement by using the tag MULTIPLICATIVE as described in Section 5.1.
Requires changes in EVAL _SFIT as well as COMPILE SFIT.

o The speed of the fitting can be improved significantly if some clever method of making initial
guesses could be implemented (like guessing the background level, then the amplitude of the
lines). Also, the robustness of the fitting routine would improve.

¢ Automatic application of limits (on x?) for good vs bad fits, and applying both fixed and
intelligent “guesses” as initial values, then keeping the best result. Maybe also automatic
variation of initial values at trouble spots, “stepping through” from min to max values etc,
to improve robustness for batch application.

¢ Automatic detection of unconstrained components due to e.g., cosmic rays etc, invalidating
the results at that point.

28

