CORONAL DIAGNOSTIC SPECTROMETER

SoHO

CDS SOFTWARE NOTE No. 41

Version 2.0 August 10, 1996

Analyzing CDS Data in IDL: An Observers Guide
S. V. H. Haugan
Institute of Theoretical Astrophysics
University of Oslo

s.v.h.haugan@astro.uio.no



1 Introduction

This document is meant as a guide to those who need to analyze data from the Coronal Diagnostic
Spectrometer aboard the Solar and Heliospheric Observatory. It is assumed that the reader is
somewhat familiar with the design of observation rasters for the CDS. Also, this document is
not meant as a substitute for the on-line documentation headers that accompany the routines
described here, as well as all other CDS software. Use e.g., xdoc,’gt_spectrum’ to display the
documentation header for the routine gt_spectrum. To search for routines that may solve your
problem, use e.g., tftd,’scan’ to find routines with the string “scan” in the routine name or
“purpose” line. Learning to use these routines and to read the routine documentation headers will
save you a lot of time.

The basic building blocks in CDS studies are rasters. Data from each raster is stored in a
separate FITS file. A CDS FITS file can be read into IDL through the function readcdsfits(),
which returns a structure that contains all the information that is available in the FITS file. The
returned structure is called a Quick Look Data Structure (QLDS). The spectral information in the
file is stored as handle values, and it is not recommended to access the data directly. Instead, use
the functions described in this (or other) documents as an interface. This will shield your programs
from future changes to the data structure, and some time in the future, you might find out your
programs will suddenly work with SUMER data as well as CDS data, with little or no changes!.

This document describes the routines that are available to pick out (deselect) specific parts
of the detector data from the raster into something that is (or should be) possible to analyze for
anyone with an interest in doing so.

2 General Overview

Extracting pieces of data from a raster requires the identification of the data to be extracted. In
general, a CDS raster covers an area of the sun (or some part of the corona) that is divided into
from 1 to 120 pixels in the solar cartesian X direction, and from 1 to about 120 pixels in the solar
cartesian Y direction. Generally, the raster contains (parts of ) a spectrum for each of these spatial
pixels (see Fig. 1). In order to extract the spectrum from a given point in the raster area, it is
necessary to specify the position through the use of the X and Y indices, (XIX and YIX).

Note that if the scan mirror step size is set to 0, but the number of scan mirror steps is more
than one, the raster is effectively a time-series (see Fig. 2). The raster area then covers from 1-120
pixels in the solar Y direction, depending on the number of slit positions (for the GIS) or the height
in pixels of the extraction windows (for the NIS).

Note that in this case, the time index (TIX) and the Y index (YIX) have to be specified when
referring to one specific spectrum. The X index (XIX) need not be specified in this case since there
is only one allowed value (zero). In those cases where there is only one pixel in the Y direction, the
Y index (YIX) need not be specified either.

In order to extract parts of the spectrum from the raster, it is necessary to specify what part
of the spectrum as well. The Normal Incidence Spectrograph (NIS) detector has two wavelength
bands, number 1 and 2 (see Fig. 3). The Grazing Incidence Spectrograph (GIS) has four wavelength
bands, numbers 1 through 4 (see Fig. 4).



Y index

Solar Cartesian Y ——>

Solar Cartesian X ———=

T Spectrum from XIX=2, YIX=1
>
=] eof- 1
.8
z
2 ol ]
S

of g 1
k|
=
2l s Es Es w0

3 N /
Xindex

Figure 1: The raster area, with a spectum at each point.

Y index
O = N

Spectrum from TIX=3, YIX=2

200 B

1sef B

1o0F -

4;1/5

ol L L
\/ 3‘5 e * ®

Figure 2: A typical time-series raster



—

%\0

Xindex

Xindex

Data extraction windows

1023

513A - -

Detector Y (pixel numbers)

Data extraction windows

0

L R R R EEEEE = 1023

Detector X (pixel numbers)

Figure 3: The Normal Incidence Spectrograph (NIS) detector.

Extraction windows
GISBAND 1 150-220A 220A

150A

L N Detector X (pixel nuimbers) e = 2047
255A 338A
0 e Detector X (pixel numbers) T > 2047
3924 4924
0 e Digtector X (PiKel Rimbarsy = 2047
0 e Ditector X (pixel fiibarsy = 2047

Figure 4: The Grazing Incidence Spectrograph (NIS) detectors.



The simplest way to refer to specific parts of the spectrum is to specify which wavelength band
(BAND) to extract. The other way is to specify what data extraction window(s) (WINDOW) to return.
The data extraction windows are defined by mk_raster in the design of the raster.

To specify a unique pixel position in the dispersion direction, it is possible to use either the wave-
length band BAND and the detector X pixel number (DETX), or the window name/index (WINDOW)

and an offset (OFFSET) within that window (see Fig. 5).

WINDOW=0
OFFSET=10
305A - -

NIS BAND 1 ~30

1023

BAND=1, DETX=500

Figure 5: A closeup of the NIS detector, band 1. The combinations (BAND=1, DETX=500) and
(WINDOW=0, OFFSET=10) in this case refer to the same detector pixel number (along the dispersion
direction). GIS pixel numbers are specified in the same way



3 Extraction routines (gt _xxx routines)

3.1 Input keywords

The routines use keywords extensively both for input and output parameters, and they have a
common nomenclature for all the keywords that they use. The input keywords are:

XIX The X index (see Fig. 1)

YIX The Y index (see Fig. 1 and 2).

TIX The Time index (see Fig. 2).

BAND Specifies the wavelength band, (1 or 2 for the NIS, 1-4 for the GIS)
DETX Detector X pixel number.

WINDOW Specifies the window name(s) or index(-ices).

OFFSET Specifies the detector X pixel number relative to the beginning of the specified data ex-
traction window.

3.2 Routine overview

The extraction routines have been designed so that the number of dimensions and the physical
interpretation of the dimensions of the return value is always fixed for a given routine. Below is a
brief description of each of them. They all take a QLDS as their first argument.

gt_spectrum Returns a one-dimensional array with counts/intensities for a given point (XIX, YIX,
and TIX have to be specified, but may be omitted if the only permitted value is zero). WINDOW
(may be an array) or BAND must be specified.

gt_scanx Returns a two-dimensional “slit spectrogram” with spectra along a horizontal line on the
sun. The first dimension is the dispersion, and the second is in the solar cartesian X direction.
YIX (and possibly TIX) must be specified when applicable. WINDOW or BAND must be specified.

gt_scany Returns a two-dimensional “slit spectrogram” with spectra from a vertical line on the
sun. First dimension is the dispersion, and the second is along solar cartesian Y. XIX and TIX
must be specified when applicable. WINDOW or BAND must be specified.

gt_scant Returns a two-dimensional “slit spectrogram”, but for one given point on the sun, with
the hypothetical slit in the “time direction”. First dimension is dispersion, and the second is
time. XIX and YIX must be specified when applicable. WINDOW or BAND must be specified.

gt_scanp Returns a two-dimensional “slit spectrogram”, with the “slit” covering arbitrary points
selected by the input keywords. First dimension is dispersion, and the second may be a
combination of solar cartesian X and Y, or time. XIX, YIX and TIX should be specified when
applicable, and should be arrays such that (XIX(1),YIX(i),TIX(1)) refer to the points to
be included in the spectrogram. WINDOW or BAND must be specified.



gt_iimage Returns a two-dimensional image taken at a specific detector X (dispersion) pixel. The
pixel must be specified with either (BAND, DETX) or (WINDOW,0FFSET. Return value dimensions
are solar cartesian X and Y (in that order).

gt mimage Returns a two-dimensional image taken at a specific wavelength, supplied as the second
parameter. Linear interpolation between neighboring detector pixels is performed. Return
value dimensions are solar cartesian X and Y (in that order).

gt_bimage Returns a two-dimensional image, with intensities integrated between two wavelengths
(2nd and 3rd parameters). Linear interpolation between pixels is used. Return value dimen-
sions are solar cartesian X and Y (in that order).

gt_windata Returns the complete array of detector counts associated with one detector window.
If you are using all of the data associated with a detector window (like averaging the spectra
over one or more dimension), or if you would like to “jump around” at different positions in
the raster very quickly, this is by far the best routine. You should have a good idea about
what the data looks like before you use it, though.

3.3 The /NODESELECT switch

All routines that return spectra or spectrograms will deselect the data into an array of the same
length as the detector band whenever the BAND keyword is used to specify what part of the spectrum
to be returned. This behaviour can be turned off, by setting the keyword /NODESELECT. This causes
the data to be packed into a contiguous array, without empty gaps inbetween.. NODESELECT is the
default when using WINDOWS to specify the parts to be extracted.

3.4 Output keywords

The gt xxx routines use output keywords to return physical values for solar coordinates, time,
and wavelengths for the retrieved data. The values returned in these keywords are always either
scalars, if the physical entity is constant over the whole returned dataset, or of the same dimension
as the returned data, in cases where the physical values vary. Note that even though the values
may be constant over one of the returned dimensions, it is always “blown up” to the same size as
the function return value. The output keywords are:

XSOLAR The solar cartesian X coordinate (in arcseconds).
YSOLAR Solar cartesian Y coordinate (arcseconds).
TIME The observation time (TAI format).

LAMBDA The wavelength in angstrom.

The routine gt_windata does not supply any physical information through output keywords.



3.5 Speeding it up

The calculation of the auxiliary data returned through the output keywords consumes more time
than the actual extraction of data. If you have no need for these auxiliary data, use the keyword
QUICK to turn these calculations off. Not all routines take this keyword yet, but more will follow.

Also, if you find yourself writing a program that loops over e.g., XIX, YIX, and/or TIX to get
at the data, you should probably use gt_windata to extract all the data and then vectorize your
program.

4 Specific examples

This section will demonstrate the use of some of the mentioned gt_xxx functions through practical
examples. In the examples, the variable a contains a QLDS with data from a NIS raster with 120
pixels in the solar Y direction and 20 pixels in the solar X direction (and only 1 pixel in the “time
direction”, so TIX may always be omitted). The raster has 3 data extraction windows, two in band
one, and the last one in band two.

4.1 gt_spectrum

To extract the (band 1) spectrum from the lower left point of the raster, we can use:

IDL> s=gt_spectrum(a,xix=0,yix=0,band=1,lambda=1am,xs=x,ys=y)

IDL> help,s,lam

S FLOAT = Array(1024)

LAM FLOAT = Array(1024)

IDL> plot,lam,s,title=’Spectrum from (X,Y) = (C+trim(x)+’",’+trim(y)+’")’

Note that it’s possible to truncate the keywords as long as it remains unambiguous (xsolar=xs
and ysolar=-ys). The result of the plot command can be found in Fig. 6 (left). The data from
the extraction windows have been placed in an array the same size as the NIS detector. Turning
this off with the keyword /NODESELECT, we get a slightly different result (Fig. 6, right):

IDL> s=gt_spectrum(a,xix=0,yix=0,band=1,1ambda=1am,xs=x,ys=y,/nodeselect)
IDL> help,s,lam

S INT Array(200)

LAM FLOAT Array(200)

IDL> plot,lam,s,title=’Spectrum from (X,Y) = (C+trim(x)+’",’+trim(y)+’")’

If we want just the data from one window, we must identify the window. For this purpose,
gt_wlimits is a useful procedure:

IDL> print,gt_wlimits(a)

Window: 0 Label: WW_321_29
Band: NIS1
Det-X: 168 to 267



Spectrum from (X,Y) = (0",—238") Spectrum from (X,Y) = (0",—238")
: T T T T T

300 320 340 360 380 310 320 330 340 350 360

Figure 6: The result of s=gt_spectrum(a,xix=0,yix=0,band=1,lambda=lam,xs=x,ys=y) to the
left, and s=gt_spectrum(a,xix=0,yix=0,band=1,lambda=lam,xs=x,ys=y,/nodeselect) to the
right

Det-Y: 522 to 641
Wavelength: 317.669 to 324.840
Window: 1 Label: WW_565_97
Band: NIS2
Det-X: 401 to 500
Det-Y: 382 to 501
Wavelength: 560.121 to 571.704
Window: 2 Label: WW_353_74
Band: NIS1
Det-X: 616 to 715
Det-Y: 522 to 641
Wavelength: 350.119 to 357.290

168 267 522 641

401 500 382 501

616 715 522 641

We want the data from the rightmost data window in Fig. 6, which is window 2 (i.e., the third
window, not the second one). The result is plotted in Fig. 7:

IDL> s=gt_spectrum(a,xix=0,yix=0,window=2,lam=lam,xs=x,ys=y)
IDL> help,s,lam

S INT
LAM FLOAT

Array(100)
Array(100)

4.2 gt_scanx

If we want to see what the spectrum in band 2 looks like along a horizontal line in the center of
the raster, we could do the following (plot_image output shown in Fig. 8):



Spectrum from (X,Y) = (0",—238")
: T T

350 352 354 356 358

Figure 7: Plot of s=gt_spectrum(a,xix=0,yix=0,window=2,lam=1lam,xs=x,ys=y)

IDL> sc=gt_scanx(a,yix=60,band=2,/nodeselect,lam=1,xs=x)

IDL> orig=[1(0,0),x(0,0)]

IDL> scale=[1(1,0),x(0,1)]-orig

IDL> plot_image,sc,orig=orig,scale=scale,xtitle=’Lambda’,ytitle=’Solar X’,/nosq

562 564 566 568 570
Lambda

Figure 8: The result of a gt_scanx call. We can see intensity variations along the solar X direction

The gt_scany and gt_scant routines function in a similar way. Specify the applicable indices
to indicate where the “slit” should be located, and the routines return data similar to those in
Fig. 8.

4.3 gt_scanp

If we want a slit spectrogram along e.g., the diagonal of the area covered by the raster, we would
use gt_scanp and specify what points to include (see Fig. 9):

IDL> XIX=indgen(120)*19/119 ; Allowable range 0..19

IDL> YIX=indgen(120) ; Allowable range 0..119 for this raster
IDL> sc=gt_scanp(a,xix=xix,yix=yix,band=2,xs=x,ys=y,/nodeselect)

IDL> plot_image,sc,/nosq,xtitle="Dispersion axis’,ytitle=’Spatial axis’



Spatial axis

0 40 60 80
Dispersion axis

Figure 9: The result of a gt_scanp call, using points along the diagonal. We can see velocity
variations along the slit.

Now if we want to know the solar coordinates of the spectrum in the line sc(*,1) in this scan,
we simply use what has been output to the x and y arrays: print,x(0,1),y(0,1) (We can use
zero as the first index since x doesn’t vary as a function of lambda).

If we are interested in the spectrum integrated along the diagonal, we can simply use
int_spec=TOTAL(sc,2) which integrates the spectrogram over the 2nd dimension (along the “slit”).

4.4 gt _iimage

If the raster at hand contains several pixels in both solar X and Y directions, it is possible to form
an image of the raster area with intensities from a given dispersion pixel on the detector.

This is done with the gt_iimage routine as follows, with the plot_image result shown in Fig. 10.
We have to specify the detector X pixel number in either of the two ways described at the end of
Section 2. See also Fig. 5.

IDL> im=gt_iimage(a,window=0,o0ffset=20,xs=x,ys=y)

IDL> orig=[x(0,0),y(0,0)] ; Origin in arcseconds

IDL> scale=[x(1,0),y(0,1)]-orig ; Scale in arcseconds

IDL> plot_image,im,orig=orig,scale=scale,xtitle=’Solar X’,ytitle=’Solar Y’

4.5 gt_mimage

Whilst gt_iimage takes the intensities from a specified dispersion pixel number, gt mimage at-
tempts to make a monochromatic image at a given wavelength. In doing this, it interpolates
linearly the intensities from neighbouring pixels. An example follows, with plot_image output in
Fig. 11.

IDL> im=gt_mimage(a,562.6)
IDL> plot_image,im,xtitle="XIX’,ytitle="YIX’

10



— 100

Selar Y

— 150

—200

Figure 10: The image from gt_iimage(a,window=0,0ffset=20,xs=x,ys=y). Note that the plot
has been stretched in the X direction for (attempted) clarity.

VI

Figure 11: Output from gt mimage(a,562.6). The plot has been stretched in the X direction

11



4.6 gt_bimage

gt_bimage is similar to gt mimage, except that it attempts to integrate the intensities over a
wavelength band specified by the lower and upper limits (2nd and 3rd parameters). There cannot
be gaps without detector data inside the integration limits. Example below, with plot_image
output in Fig. 12.

IDL> im=gt_bimage(a,562.0,564.0)
IDL> plot_image,im,xtitle="XIX’,ytitle="YIX’

100

20

50

VI

4Q

[n]aTn]n]n]n]n]n]n]a]n]a]n]u]n]a]u]a]x
AR AR IR EAREAE
el nln lnlulnlulnlululululululu]ulu]ululu]n}

6]

A 0 T T

]
O -
X

Figure 12: Output from gt_bimage(a,562.0,564.0). The plot has been stretched in the X direc-
tion. The background structure seen in Fig. 11 caused by varying velocities has disappeared when
integrating over the emission line.

5 Example program

Below is a sample “quick and dirty” program that demonstrates the usefulness of the gt xxx
functions. It is a procedure called quick that takes a QLDS as a parameter. The QLDS has to
contain a raster with more than one pixel in both X and Y directions. It starts by extracting a
spectrum from the center of the raster, plotting the spectrum (without wavelengths) as a contiguous
array. The user may then click on the spectrum to select a wavelength, and the program displays
an image returned by gt_mimage at that wavelength. The user may then click on the image to
select a new point from which the next spectrum is extracted etc.

Although very simple, this program is easily modified (by having two cursor statements) into
displaying images integrated over a wavelength band, or even finding fwo images integrated over
different wavelength regions, and then displaying their ratios.

PRO quick,qlds
'P.multi = [0,1,1]

dims = gt_dimension(glds) ; Returns a structure with information on

12



; the size of the raster. See online doc.

xix = dims.ssolar_x/2 ; We want to start with the middle pixel
yix = dims.ssolar_y/2 ;

nwin = gt_numwin(qlds) ; Find the number of data extraction windows
winsize = gt_winsize(qlds) ; We want to know the size (no. of

; dispersion pixels) of the extraction

; windows.
winsize = winsize(0) ; gt_winsize returns one value for

; each window -- they’re identical.

WINDOW = INDGEN(nwin)
WINDOW,O ; Get some display windows up.
'quiet = 1

continue = 1
WHILE continue DO BEGIN

;; Fetch a spectrum and plot without wavelengths
s = gt_spectrum(qlds,xix = xix,yix = yix,lambda = 1,WINDOW=window)
plot_io,s > 1,title=’Click on plot to get image’,$

subtitle=’Click left of y axis to quit’

;3 Overplot the division between different extraction windows,
;3 and display the window labels centered on each window

FOR i = O,nwin-1 DO BEGIN
xyouts, (1+0.5)*winsize ,MAX(s),gt_wlabel(qlds,i),alignment=0.5
oplot,i*winsize*[1,1]-0.5,[1,MAX(s)],thick = 3

ENDFOR

;3 Wait for a cursor press

cursor,x,y,/data,/down
IF x GE O AND x LT N_ELEMENTS(1) THEN BEGIN

;; Avoid using wavelengths between two windows.

IF FIX(x) GT O AND FIX(x+1) MOD winsize EQ O THEN $
X = FIX(x)

;; Lookup the wavelength in the array 1

lam = interpolate(l,x)
PRINT,"Lambda: "+trim(lam)

;; Find the image at this wavelength and display it

13



im = gt_mimage(qlds,lam)
plot_image,im,title = ’Click on image to select new point’
cursor,xix,yix,/data,/down
xix = (FIX(xix) > 0) < (dims.ssolar_x)
yix = (FIX(yix) > 0) < (dims.ssolar_y)
END ELSE continue=0
ENDWHILE

END

14



