CORONAL DIAGNOSTIC SPECTROMETER

SOHO

CDS SOFTWARE NOTE No. 28

Version 2 29 December 1995

TAPE ARCHIVING PROCEDURES
FOR THE SOHO/CDS

Donald G. Luttermoser
Applied Research Corporation
NASA/Goddard Space Flight Center
Code 682
Greenbelt, MD 20771

lutter@orpheus.nascom.nasa.gov

1 Introduction

This manual describes the technique for reading and writing archival tapes or CDROMS (note that
CDROM input/output has not been tested yet) for the SOHO Coronal Diagnostic Spectrometer
(CDS) data. In 1992, the SOHO Scientific Operations Working Group (SOWG) selected two
standards for storing scientific data: the Standard Formatted Data Unit (SFDU) and the Flexible
Image Transport System (FITS). FITS is a standard for formatting data into files in a computer—
independent, self-describing fashion. Meanwhile, SFDU is a standard for documenting the contents
and format of a data file, and for outlining the interdependencies of collections of files. A full
description of the SFDU protocol can be found in the Consultative Committee for Space Data
Systems’ (CCSDS) Green Book (CCSDS 621.0-G-1), May 1992 entitled Standard Formatted Data
Units — A Tutorial, and the Blue Book (CCSDS 620.0-B-2), May 1992 entitled Standard Formatted

Data Units — Structure and Construction Rules.

SFDU works by associating a 20—byte label with each file which serves as a reference to docu-
mentation about the file format. This label can be prepended to the file, in which case it is called
an attached SFDU label. Otherwise, it can be contained in a separate file on the archive medium,
with a reference to the file it applies to, which is a detached label. In addition, each file can be
associated with one or more additional files which describes its contents. Meanwhile, the FITS
standard not only specifies how data is organized within a FITS file, but also how a FITS file is
stored on disk or tape. FITS files, with their own attached labels, makes the attached SFDU label
incompatible with the FITS format. As such, this project uses the detached SFDU header in a
separate file, which will always be the first file on an archive tape or CDROM.

When writing data to a disk medium, there is generally a standard for how the files are organized
and identified. For example, the ISO-9660 standard is the recommended way to write CDROMs,
and these disks can then be easily read on just about all computer platforms. Performing a directory
of the files on the disk, and extracting individual files are simple tasks. However, there is currently
no comparable standard for writing tapes that provide the same facility of use. Although there
is an ANSI standard for writing labeled tapes, the computer vendors such as Digital extend this
standard for their own use, and Unix computers generally don’t follow this standard at all, so that
it is not a trivial matter to use a labeled tape written on one computer on another.

On the other hand, tapes written using the FITS specification can be read on any computer
platform. This was, in fact, the primary goal of FITS. However, FITS tapes are fairly primitive,
with each file separated from the next by only a filemark, and with no labels giving the names of
the files. The contents of a FITS tape can only be determined by opening up each FITS file on the
tape, and extracting its header. This is not only clumsy, but can take quite a bit of time to work
through a modern tape cartridge with several gigabytes of storage.

There are then two goals for developing a tape format for SOHO data: First of all, the tape
must be written to associate SFDU labels and descriptors with the data files, and at the same
time allow the tape to be read in with standard FITS readers. Second, there needs to be a way of
documenting the contents of the tape at the front of the tape, so that the specific data desired can
be more rapidly retrieved. This manual describes a protocol that has been developed that combines
these two goals into one, so that satisfying the first also satisfies the other.

This manual continues with §2 which gives a brief tutorial on how to run the tape archiving
procedures. It essentially gives an easy recipe for running XWINTAPE and MAGTAPE. §3 sum-
marizes the SFDU format and discusses how to revise the CDS/SFDU format with the CCSDS.

The FITS files are discusses in §4. Note that there are more detailed CDS Software Notes available
(e.g., #3, #4, and #11) concerning the FITS files. The main tape-driving procedure, MAGTAPE,
is discussed in detail in §5, and likewise, the widget procedure, XWINTAPE, that drives MAG-
TAPE in an X-window environment, is presented in §6. §7 warns the operator of possible problems
that may arise during a tape archiving run. Appendix A lists the IDL procedures used in during
a tape archiving run. Finally note that named widget buttons have around them in this

manual and toggle—type buttons have a ¢ designation associated with the name.

2 Brief Tutorial

Before getting into the details of the archiving procedures of the SOHO/CDS telemetry, this section
gives a brief tutorial for those anxious to use the software. All of the archiving software is written
in IDL, and has been designed to operate in any operating system (e.g., Unix, VMS, DOS, or
MacOS — note that the DOS and MacOS sections of the code have not been fully implemented
as of this writing). Also, the code has been designed to work under any version of IDL later
than version 2.0. WARNING! This code has only been tested under IDL Version 3.2 and later,
should any bugs be found for earlier IDL versions, please inform the CDS staff. The main driving
procedure is called MAGTAPE. However, a widget program, called XWINTAPE, has been designed
to drive MAGTAPE. The operation of XWINTAPE will be described in the next subsection and
the operation of MAGTAPE from a dumb terminal is described in the subsequent subsection.

2.1 The Tape Drive Name

Before one enters the IDL session for tape archiving, one must inform IDL of the tape drive name.
IDL has various procedures to access a tape drive, unfortunately these commands are only valid
under the VMS operating system. To use these commands, IDL requires that the tape drive be
assigned to a logical name MTn, where n is an integer between 0 and 9 (i.e., MTO, MT1, ..., MT9).
Tape drives connected to a machine running VMS have typical device names like “MUAQ0:” or
“MKBA500:”. For your machine, enter SHOW DEV at the VMS prompt to get a list of all known
devices connected to your machine. The magnetic tape drive should have a name similar to that
listed above. One would then enter the following VMS commands before entering IDL:

ALL MUAQ: Allocate the tape drive to the user.

MOUNT/FOR MUAO: Mount tape MUAO:

DEFINE MT3 MUAOQ: Define the logical name MT3 as the tape drive name.
In this example, the UNIT parameter below is then “3”.

The SOHO/CDS group (in particular, Dr. William Thompson) has developed IDL procedures
for the Unix operating system that mimic the IDL/VMS tape accessing commands. These proce-
dures only can be used for IDL Version 3.1 or later running under Unix. These procedures have
been set up so that the tape drive name must be assigned to an environment variable of type MTn,
similar to that in VMS. Tape drive names in Unix are a bit more difficult to ascertain than VMS
tape drives. In Unix, enter Is -1 /dev/*mt* (Ultrix or OSF/1) or Is -I /dev/*st* (Sun Unix). This
command should give you the following output:

crw-rw-rw- 1 root system 9,20487 Jun 22 1994 /dev/nrmt0a
crw-rw-rw- 1 root system 9,20483 May 11 15:43 /dev/nrmtOh <=
crw-rw-rw- 1 root system 9,20481 Jun 22 1994 /dev/nrmt0l
crw-rw-rw- 1 root system 9,20485 Jun 22 1994 /dev/nrmtOm
crw-rw-rw- 1 root system 9,20486 Jun 22 1994 /dev/rmt0Oa
crw-rw-rw- 1 root system 9,20482 Apr 20 11:45 /dev/rmtOh —
crw-rw-rw- 1 root system 9,20480 Jun 22 1994 /dev/rmt0l
crw-rw-rw- 1 root system 9,20484 Jun 22 1994 /dev/rmtOm

Note that 2 entries have “times” instead of “years” listed in the column just before the device
name. The prefix “n” simply means that the tape drive will not rewind automatically after every
magnetic tape command given (i.e., “nrmtOh” does not rewind the tape after use, while “rmt0Oh”
does rewind the tape). One would then enter the following command before entering IDL:

setenv MT1 /dev/nrmtOh The environment variable MT1 points to tape drive
/dev/nrmtOh, hence UNIT = 1 in the examples below.

As of this writing, tape access on IBM compatible running DOS and Macintosh machines has
not been fully implemented. Should the need arise, these platforms will be fully integrated into the
software described below.

2.2 Archiving from an X—Terminal or X—Window Workstation

Upon entering IDL, type XWINTAPE (upper or lower case) or XWINTAPE, SFDU at the IDL
prompt. In a few seconds, a large widget filled with subwidgets, as shown in Figure 1, will appear
entitled: XWINTAPE: Read/Write FITS/SFDU Tapes. Step—by—step instructions directing you
how to use this widget to read or write a tape can be found in the top Message: widget text—box.
Note that for each message that is displayed in this box, a more detailed explanation of the directions
can be found by clicking the widget button. See the Widget Controls: XWINTAPE section
of this software note for a more detailed description of the XWINTAPE widget. To read/write an
archive tape, follow this recipe:

1. If the tape does not contain a SFDU header file (for type Read) or you do not wish to place one
on tape (for type Write), click on the button in the Tape Header widget before
clicking any other buttons. You then are telling XWINTAPE that this is a standard FITS
tape 1/0. Note that for ALL SOHO/CDS tape archives, the tape must contain a
SFDU header file.

2. For normal operation of XWINTAPE, the first widget button to click is ‘<> Read ‘ or ‘ o Write‘
in the Tape Access box.

3. Then if you wish to override the standard IDL tape accessing commands (see §7 Help! —
Archiving Problems that may Arise), click the ‘<> Unix mt & dd Commands‘ button in the
Access Override box. Normally there will be no need to do this!

4. The next button to click is the widget. Then select one of the values (i.e., MTO

... MT9). Note that before entering IDL, one should have set an environment variable (Unix)
or logical name (VMS) of the form “MTn”, where “n” is an integer between 0 and 9, that
points to the name of the tape drive (see §2.1 The Tape Drive Name).

- XWINTAPE: Reod/Write FITS/SFDU Topes 2 n]

Figure 1: The XWINTAPE widget as it appears at the start of an archiving run.

10.

. Now click on the Directory Name: box and enter the directory that contains the files to be

written to tape or where the files read from tape will be stored. Once this is typed, click on
the ‘Accept Directory ‘ button. The main widget becomes inactive and the cursor becomes an
hourglass while the following occurs:

(a) For type Write, all of the FITS files found in the entered directory will be listed in the
large text widget box and the FITS headers from all of the files will be stored. Note
that if no FITS files are found in this directory or an invalid directory was entered,
XWINTAPE will tell you. If an incorrect directory was entered, just type in a new
directory and re—accept it.

(b) For type Read, the SFDU is read from the tape. Filenames and FITS headers are
retrieved from the SFDU.

Note that it takes a substantial amount of time to retrieve these FITS headers,
especially if many files are to be accessed.

. Once the files are listed in the upper large box, the main widget becomes active, including the

FITS Header | button. One can view the FITS headers associated with each file at anytime

thereafter. One now selects the files that he/she wishes to read/write from/to the tape by
either clicking on the filenames individually or by clicking <Select All Displayed Files>, which
will move all of the FITS filenames from the top box to the bottom box. Note that if you
make a mistake, files can be removed from the bottom box by simply clicking on the filename
in that box.

. If you wish to save the SFDU in a disk ASCII file, click in the Save SFDU File?

box. Note that also one could have retrieved the SFDU by passing a variable in the call
to XWINTAPE (e.g., XWINTAPE, SFDU), when XWINTAPE exits, the SFDU header is

stored in the passed variable (e.g., SFDU).

. A default process for the writing archive procedures is to check the first FITS file in the

selected directory to see if it conforms to the CDS standard. This means that array sizes and
data type are consistent with those defined for the CDS software and that the FITS keywords
are registered with the NSSDC (see §3). One can override this default validity check by
“clicking” the appropriate button in the Valid CDS FITS? box.

. Typically this is all you need to do before starting the archive. Next click on the | << Begin >>

button. Because this is a somewhat dangerous button, activating this button initiates another
widget which asks you to confirm that you really wish to start the archive.

(a) If so, click the | YES, please continue! | button to start the process.

(b) If not, click the | NO, please return to the main widget! | button to cancel the call and
return to the XWINTAPLE widget.

Once MAGTAPE has been started, the XWINTAPE widget becomes inactive. All tape 1/0
messages appear in the upper large text box. Note however that tape /O messages during
a Unix mt & dd Commands run will be printed to the text window running XWINTAPE and
not the widget.

(a) If the CDS FITS validity check is made, a warning widget will appear if the FITS file does
not meet the CDS standard. One has the option of quitting at that point or continuing

with the archive. Whether or not one continues depends upon which invalid condition
is found.

(b) When the tape I/O has successfully completed, the ‘ Help‘ and ‘## Exit ## ‘ widgets

become active and the cursor returns from its hourglass shape to its standard shape.

Click | ## Exit ## | to leave XWINTAPE and destroy the widget.

Note that you may have an SFDU file (e.g., sfdul9950518220807.head) and a log file (e.g.,
tapel19950518220801.log) waiting for your inspection, depending on the options set during your
session.

2.3 Archiving from a Dumb Terminal

If archiving from a non—X-window environment, one must run MAGTAPE without the use of

XWINTAPE. The call to MAGTAPE has the following form:

MAGTAPE, UNIT, TYPE, SFDU, BLFAC, FILES, XWSTR, NOSFDU=NOSFDU, DISK=DISK,
NAME_TYPE=NAME_TYPE, OUTPUT=0UTPUT, UNIXMT=UNIXMT, CKFITS=CKFITS,
XWIDGET=XWIDGET, ERRMSG=ERRMSG ,

see §5 The MAGTAPE Procedure for further descriptions of these parameters.

Let’s assume that the magnetic tape name has been assigned to MTO0, then UNIT = 0. The
SFDU variable will contain a string array with the contents of the SFDU upon return of MAGTAPE.
Let’s now assume that we wish to read all of the FITS files off of the tape and place it in the current
directory. Let’s also keep a log file of the events that occur in MAGTAPE called “mytape.Jog”. We
then would perform the tape I/O with the following command:

MAGTAPE, 0, 'read’, SFDU, OUTPUT="mytape.log’ .

Now let’s read FITS files #2, #8, and #17 (note that this corresponds to tape files #3, #9,
and #18 when a SFDU header file exists on the tape, since this SFDU file is considered to be tape
file #1) from the tape and place them in directory “/user/mydata” with filenames derived from
the FILENAME keyword in each FITS file. Let MAGTAPE come up with its own name for the
log file:

MAGTAPE, 0, 'read’, SFDU, 2880, [2,8,17], DISK="/user/mydata’, /OUTPUT,
NAME_TYPE="kword:FILENAME”’ .

Note that we told MAGTAPE that the tape was written at 2880 bytes/record. But what if it was
not? Assume that the tape was written at 14,400 (= 5 x 2880) bytes/record. The above command
would not cause a problem! MAGTAPE would encounter a tape error and automatically adjust
BLFAC (i.e., the blocking factor) to the correct value (WARNING: this is not true if the /UNIXMT

keyword was set).

We now wish to write all of the FITS files in directory ’/user/fitsdata’ to tape at 2 x 2880
bytes/record. We won’t worry about keeping a log file, but we want any error messages that may
be generated to be sent to the variable ERRMSG instead of being printed to the screen:

ERRMSG =7

MAGTAPE, 0, 'write’, SFDU, 5770, DISK="/user/fitsdata’, ERRMSG=ERRMSG

— the tape would now be written at 5770 bytes/record (including the SFDU header file).

3 Standard Formatted Data Unit

Interests by the space physics and solar science communities in Standard Formatted Data Units
(SFDUs) has been greatly increased by the adoption of SFDUs as a standard by the GGS/ISTP
(Global Geospace Science / International Solar Terrestrial Physics) project and by the pending
adoption of SFDUs as a standard for NASA space science archiving generally by the National
Space Science Data Center (NSSDC).

The basic SFDU building block is comprised of a LABEL field and a VALUE field, and is referred
to as a Label-Value-Object (LVO). This structure is the fundamental structure element used to
build SFDUs. The LVOs themselves are made up of a sequence of octets. SFDU data products are
constructed from the basic LVO in one of two ways. If the VALUE field of the LVO contains purely
user data, it is termed a Simple LVO. If, on the other hand, the VALUE field of the LVO contains
purely LVOs, it is termed a Compound LVO.

SFDU products are always packaged in a special kind of Compound LVO called the Ezxchange
Data Unit (EDU). Only EDUs may be interchanged between systems. Special types of Compound
LVOs also can be used to package together application data (the Application Data Unit (ADU))
and data description data (the Description Data Unit (DDU)).

SFDUs work by associating a 20-byte LVO label with each file that serves as a reference to
documentation about the file format. These types of labels will be referred to as standard SFDU
labels from this point forward. The following represents a standard SFDU label:

CCSD3ZF0000100000001
which has the following meaning:

¢c ¢ S b|3(Z(Fj0j0o 0 o 1,0 0 O O O 0 0 1
1 2 3 4 (5|6 |7(8(9 10 11 12|13 14 15 16 17 18 19 20

Bytes 1-4, 9-12:
Bytes 1-4:
Bytes 9-12:

Byte 5:

Byte 6:

Byte 7:

Byte 8:

Bytes 13-20:

ADID (Authority [CAID] and Descriptive Identifier [DDID]) (= CCSD0001)
CAID (= CCSD, can also be NSSD)
DDID (= 0001)

Version of SFDU label (= 3)
1 = Length in ASCII
2 = Length in Binary Integer
3 = Other Delimitation Technique

SFDU Class Identification (=7)
C = SFDU Identifier Service |
D = Data Description Record

E = Data Element Dictionary
F = Description Data Unit (DDU) t

I = (Primary) Data (of Interest) i
K = Instance Identifier/Attributes i
R = SFDU Reference Service

S = Supplementary Data I

V = Volume Preparation Data i}

U = Related, Labeled Data Objects follow x
7 = “I'm an SFDU”; Labeled Object follows x

Delimitation Type (= F)
0 = Spare (in Version 1 & 2, the rest are Version 3)
5 = Marker
E = Sequential EOF(s)
C = Consecutive EOF(s)
F = System EOF

Spare (= 0)

Description (= 00000001)
Length of Object to follow (Version 1 & 2 Label)
Marker (Version 3, Type S)
EOF Count (Version 3, Type E & C)
00000001 (Version 3, Type I)

Under the SFDU Class Identification (Byte 6) in the above list,
7 = Registered Metadata Objects, I = Data Objects, x = SFDU Object Identifiers

Beside these standard 20-byte labels, one can have Compound LVOs containing Parameter
Value Language (PVL). PVL lines resemble FITS headers, and as such, the FITS headers are used
to construct PVL groups within the SFDU header. All PVL lines in the SFDU end with a “;”
marker. Comments can also be included in the SFDU and take the form of comments in the C
programming language (i.e., text lines bracketed by “/*” and “*/” delimiters). All lines can extend
out to 80 characters (i.e., bytes) including the line ending <newline> character.

3.1 Sample SFDU

The following is an example of an SFDU header file for two FITS file written to tape. Imbedded
comments help explain each entry.

CCSD3ZF0000100000001NSSD3VS00227MRK**001

/* */
/* This data file is a "detached" Standard Formatted Data Unit (SFDU) file x/
/* referencing FITS files loaded to this archive tape. It contains filename */
/* information and the primary FITS header for each file. The FITS files */

/* contain archival data from the Coronal Diagnostic Spectrometer (CDS) */
/* onboard SOHO. For further information concerning the tape archiving */
/* procedure and SFDUs, see CDS Software Note #28. */
/* */
/* In the VOL_INFORMATION block (NSSD3VS00227), the keywords have the */
/* following meaning: */
/% VOL_CREATION_TIME: The date and time the archive volume (i.e., */
/* tape/CD) was made -- CCSDS format. */
/* VOL_BYTES_RECORD: The number of bytes in each record for each file */
/* on the tape/CD (= 2880%n, 1<=n<=10). */
/* TOTAL_VOL_BYTES: Total number of bytes (including this SFDU header */
/* file) on the tape/CD (i.e., FITS + SFDU sizes). %/
/* TOTAL_FITS_FILES: Total number of FITS files on the tape/CD. */
/* TOTAL_FITS_BYTES: Total number of bytes associated with the FITS */
/* files (i.e., TOTAL_VOL_BYTES - SFDU size). */
/* TOTAL_VMS_BLOCKS: Total number of VMS blocks (1 block = 512 bytes) */
/* associated with the FITS files. This number may */
/* be useful for those working in a VMS environment. */
/* */
/* Each file marker (CCSD3US00009) contains 2 submarkers: */
/* CCSD3RS00003: Replacement reference service -- file names associated */
/% with the SFDU, where */
/* CCSDS1 = File name (short version for PC/D0OS machines) */
/* which follows the CCSDS1 specification, */
/% CCSDS2 = File name (long version for VMS, Unix, and */
/* Mac machines) which follows the CCSDS2 */
/* specification, */
/* CCSDS3 = Integer giving the position of the file on */
/* the tape (note that the detached SFDU file %/
/* is designated as file #1 on the tape and the */
/* first FITS file is file #2 on the tape). */
/* This follows the CCSDS3 specification. */
/* Each file will logically be include at this spot in the */
/* SFDU and will logically include a LABEL (NSSD3IF00229) */
/* which identifies the file as a FITS file following the */
/* SOHO/CDS archive conventions. */
/% NSSD3KS00228: The FITS header associated with the file, which has */
/* been placed in a PVL object labelled as FITS_HEADER. */

/*

BEGIN_OBJECT = TAPE_INFORMATION;
TAPE_CREATION_TIME = ’1995-05-22T23:46:40.80872°;
TAPE_BYTES_RECORD = 2880;

TOTAL_TAPE_BYTES = 749584;
TOTAL_FITS_FILES = 2;
TOTAL_FITS_BYTES = 481744;
TOTAL_VMS_BLOCKS = 941;

END_OBJECT;
CCSD$$MARKERMRK**001CCSD3USOO009MRK**002CCSD3RSO0003MRK**003
REFERENCETYPE = CCSDSO;

LABEL = NSSD3IF0022900000001;
REFERENCE = ("CCSDS1 CDS_1216.FIT"

, "CCSDS2 = cds_window10_19940915_1216.fits"
, "CCSDS3 = 2¢
)

CCSD$$SMARKERMRK**003NSSD3KS00228MRK**004
BEGIN_OBJECT = FITS_HEADER;

SIMPLE = T; /* Written by IDL: 28-Mar-1995 15:09:33.00
BITPIX = 32; /* Integer*4 (long integer)
NAXIS = 2;

NAXIS1 = 60;

NAXIS2 = 120;

DATE = ’28/03/95°;

SFDUADID = ’NSSD0229 ’; /* SFDU ADID
FILENAME = ’cds_window10_19940915_1216";

ORIGIN = ’SO0HO-EOQOF’; /* Institute where file was written
TELESCOP = ’S0OHO ’; /* Solar Heliospheric Observatory
INSTRUME = °CDS ’; /* Coronal Diagnostic Spectrometer
DETECTOR = ’NIS ’; /* Normal or Grazing Incidence Spectrometer
STUDY_ID = 4; /* Study ID
PROG_NUM = 5; /* Study counter
SEQ_IND = 0; /* Raster index within the study
RAS_ID = -1; /* Raster ID
DATE_OBS = ’1994-09-15T12:16:53.023Z’ ;/* Start date/time of observation
DATE_END = ’1994-09-15T12:22:30.882Z’; /* End date/time of observation
OBT_TIME = 1158322642.023; /* Onboard start time
OBT_END = 1158322979.882; /* Onboard end time
0BS_PROG = ’EMSQS ’; /* Emission Measure Study of the Quiet Sun
STUDYVAR = -1; /* Study variation index
CATEGORY = ’Science ’; /* Study category
SCI_0BJ =’ ’; /* Scientific objective
SCI_SPEC = ’ ’; /* More specific scientific objective
0BJECT = * 7; /* Type of object or event observed

10

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

0BJ_ID = 7
TRACKING = F;
PROG_ID = -1;
PROGNAME = ’ 7
CMP_NO = -1;
CMP_NAME = * ’;
LL_ID = -1;
LL_DESC =’ ’;
XCEN = 42.8189;
YCEN = -3151.40;
ANGLE = 0.00000;
IXWIDTH = 4.00000;
IYWIDTH = 226.000;
COMP_ID = 6;
COMP_OPT = 0;

DW_ID = 144;
SER_ID = 144;

EXPCOUNT = 60;
EXPTIME = 2.00000;

/* Object ID

/* Solar feature tracking

/* Multi-study program ID

/* Multi-study program name

/* SOHO campaign ID number

/* Campaign name

/* Line list ID number

/* Line list description

/* Preliminary center in X of field-of-view
/* Preliminary center in Y of field-of-view
/* Preliminary orientation of field-of-view
/* Preliminary width in X of field-of-view
/* Preliminary width in Y of field-of-view
/* Telemetry data compression scheme

/* Telemetry data compression option

/* Data extraction window list ID

/* On-board sequence load ID

/* Number of exposures in the raster

/* Exposure time in seconds

NX = 60; /* Number of steps in X direction
NY = 1; /* Number of steps in Y direction
XSTEP = 4.06400; /* Step size in arcsec in X direction
YSTEP = 0.00000; /* Step size in arcsec in Y direction
OPSLBITS = 21011 ’; /* OPS L status bits at start of raster
0PS_L = 2080; /* OPS L position at start of raster
OPSRBITS = 21010 ’; /* OPS R status bits at start of raster
OPS_R = 2304; /* OPS R position at start of raster
SLIT_POS = O; /* Slit position at start of raster
SLIT_NUM = 5; /* Slit number

MIR_POS = 68;
NWINDOWS = 11;

EV_ENAB = F;

COMP_ERR = F;

VDS_ORI = F;

VDS_ACC = F;

TTYPE1 = ’S0LAR_X ’;
TTYPE2 = ’SO0LAR_Y ’;
TUNIT1 = ?ARCSEC ’;
TUNIT2 = ?ARCSEC ’;
TRPIX1 = 1;

TRPIX2 = 1;

TRVAL1 = 42.8189;
TRVAL2 = -3382.40;
TDELT1 = 1.01600;
TDELT2 = 1.01600;

END_OBJECT;

/* Mirror position at start of raster
/* Number of data windows
/* Event recognition enabled
* Data compression scheme error
/* Dat p i h
/* VDS telemetry data oriented by columns
/* VDS accumulate mode
/* Solar X (cartesian west) axis
/* Solar Y (cartesian north) axis
/* Arcseconds from center of sun
/* Arcseconds from center of sun
* Reference pixel alon imension
/* Ref pixel along X di i
* Reference pixel alon imension
/* Ref pixel along Y di i
* Reference position alon imension
/* Ref positi long X di i
* Reference position alon imension
/* Ref positi long Y di i
/* Increments along X dimension
Y

/* Increments along Y dimension

CCSD$$MARKERMRK*+004CCSD$$MARKERMRK* 002
CCSD3USO0009MRK**005NSSD3RS00229MRK**006

11

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

REFERENCETYPE = CCSDSO;
LABEL = NSSD3IF0022900000001;

REFERENCE = ("CCSDS1
"CCSDS2
"CCSDS3

b

b

)

3[1

CDS_1216.FIT"
cds_window11_19940915_1216.fits"

CCSD$$SMARKERMRK**006NSSD3KS00228MRK* 007
BEGIN_OBJECT = FITS_HEADER;

SIMPLE
BITPIX
NAXIS
NAXIS1
NAXIS2
DATE
SFDUADID
FILENAME
ORIGIN
TELESCOP
INSTRUME
DETECTOR
STUDY_ID
PROG_NUM
SEQ_IND
RAS_ID
DATE_0BS
DATE_END
OBT_TIME
OBT_END
0BS_PROG
STUDYVAR
CATEGORY
SCI_0BJ
SCI_SPEC
0BJECT
0BJ_ID
TRACKING
PROG_ID
PROGNAME
CMP_NO
CMP_NAME
LL_ID
LL_DESC
XCEN
YCEN
ANGLE
IXWIDTH
IYWIDTH
COMP_ID

T;

32;

2;

60;

120;
128/03/957;
*NSSD0229 ’;

/* Written by IDL: 28-Mar-1995 15:09:33.00
/* Integer*4 (long integer)

/* SFDU ADID

’cds_window11_19940915_1216";

*SOHO-EQF’ ;
*SOHO ’;
*CDS 7?5
'NIS 25

-1;

/* Institute where file was written

/* Solar Heliospheric Observatory

/* Coronal Diagnostic Spectrometer

/* Normal or Grazing Incidence Spectrometer
/* Study ID

/* Study counter

/* Raster index within the study

/* Raster ID

?1994-09-15T12:16:53.023Z’ ;/* Start date/time of observation

?1994-09-15T12:22:30.88272°;
1158322642.023;
1158322979.882;

’EMSQS ’;
-1;
’Science ’;

42.8189;
-3151.40;
0.00000;
4.00000;
226.000;
6;

/* End date/time of observation
/* Onboard start time

/* Onboard end time

/* Emission Measure Study of the Quiet Sun
/* Study variation index

/* Study category

/* Scientific objective

/* More specific scientific objective

/* Type of object or event observed

/* Object ID

/* Solar feature tracking

/* Multi-study program ID

/* Multi-study program name

/* SOHO campaign ID number

/* Campaign name

/* Line list ID number

/* Line list description

/* Preliminary center in X of field-of-view
/* Preliminary center in Y
/* Preliminary orientation
/* Preliminary width in X
/* Preliminary width in Y
/* Telemetry data compression scheme

of field-of-view
of field-of-view
of field-of-view
of field-of-view

12

*/
*/

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

COMP_QPT = 0; /* Telemetry data compression option */

DW_ID = 144; /* Data extraction window list ID */
SER_ID = 144; /* On-board sequence load ID */
EXPCOUNT = 60; /* Number of exposures in the raster */
EXPTIME = 2.00000; /* Exposure time in seconds */
NX = 60; /* Number of steps in X direction */
NY = 1; /* Number of steps in Y direction */
XSTEP = 4.06400; /* Step size in arcsec in X direction */
YSTEP = 0.00000; /* Step size in arcsec in Y direction */
OPSLBITS = 1011 ’; /* OPS L status bits at start of raster */
OPS_L = 2080; /* OPS L position at start of raster */
OPSRBITS = 1010 ’; /* OPS R status bits at start of raster */
OPS_R = 2304; /* OPS R position at start of raster */
SLIT_POS = 0; /* Slit position at start of raster */
SLIT_NUM = 5; /* S1lit number */
MIR_POS = 68; /* Mirror position at start of raster */
NWINDOWS = 11; /* Number of data windows */
EV_ENAB = F; /* Event recognition enabled */
COMP_ERR = F; /* Data compression scheme error */
VDS_ORI = F; /* VDS telemetry data oriented by columns */
VDS_ACC = F; /* VDS accumulate mode */
TTYPE1 = ’SOLAR_X ’; /* Solar X (cartesian west) axis */
TTYPE2 = ’SOLAR_Y ’; /* Solar Y (cartesian north) axis */
TUNIT1 = ?ARCSEC ’; /* Arcseconds from center of sun */
TUNIT2 = ’ARCSEC ’; /* Arcseconds from center of sun */
TRPIX1 = 1; /* Reference pixel along X dimension */
TRPIX2 = 1; /* Reference pixel along Y dimension */
TRVAL1 = 42.8189; /* Reference position along X dimension */
TRVAL2 = -3382.40; /* Reference position along Y dimension */
TDELT1 = 1.01600; /* Increments along X dimension */
TDELT2 = 1.01600; /* Increments along Y dimension */
END_OBJECT;

CCSD$$SMARKERMRK*+007CCSD$$MARKERMRK* 005

3.2 SFDU Registration with the Consultative Committee for Space Data Sys-
tems (CCSDS)

The archiving procedures that have been developed for CDS are written in IDL. In particular, the
SFDU for a set of FITS files is generated with the sfdu_make.pro procedure. This procedure makes
use of the SEFDU registration files in the /cs/data/sfdu directory. The registration with the CCSDS
(the controlling agency) took place in early December 1995. These files are described as follows:

13

File Name ADIDNAME Description
sfdu_vol_dict.reg0: NSSDo0227 Volume keyword dictionary.
sfdu_cds_cat_obj.regl: NSSDO0228 Describes how the SFDU/PVL relates
to the FITS headers.
sfdu_cdsfits_dict.regd: NSSD0229 SOHO/CDS FITS header dictionary.
stdu_cds_desc.reg0: NSSD0238 SOHO/CDS instrument description.

Note that the “0” in “.reg0” indicates that these are the original registration files. Future changes
to these registration files will have filename extensions of “.regl.” “.reg2,” etc.

The SFDU detached header that will appear as the first file on the tape or CD has various
markers in it that point to the registration files listed above. Figure 2 shows a flow chart of
the SFDU template used for the SOHO/CDS. The first line of the SFDU header has a “Z” class
marker indicating that the file is an SFDU and that a Labeled Object follows. Imbedded in this
marker (i.e., the SFDU) is an “NSSD” ADID marker containing the Volume Preparation Data
(“V7” class) defined by the “0227” object description (i.e., this marker points to the NSSD0227
registration packet). This volume data is written in PVL. Following this initial volume data,
which contains information concerning the tape or CD, a series of markers follow, containing the
SEFDU Reference Service. This reference service contains a LABEL pointing to the NSSD0229
registration packet defining the FITS keywords — note that the LABEL on the sample SFDU
above has NSSD31F0022900000001, where “I” (the 6th character) indicates the file it is associated
with is the primary data of interest and the “F” (the 7th character) indicates that the file ends
with a tape (or CD) eof marker. The reference service also contains the name associated with the
file (i.e., the DOS version CCSDS1 protocol, the Unix/VMS/MacOS version CCSDS2 protocol,
and the file’s position on the tape [= CCSDS3 protocol]). Attached to this reference service is
a Instance Identifier/Attributes (“K” class) which points to the NSSD0228 registration packet.
This area of the SFDU contains all of the keyword values and definitions of the FITS file headers,
listed separately from the files in this SFDU header for the user’s convenience. A closing marker
follow each Reference Service entries.

The SFDU header file on the tape references the above mentioned registration files. In turn,
these description and dictionary files point to each other depending on whether a DDRID (Data
Description Record ID), a DEDID (Data Entity Dictionary ID), and/or a SUPID (Supplementary
Metadata Data) entry is embedded (see Figure 3). For instance, the SUPID entry NSSD0238
points to a file that contains a summary of the SOHO mission description, and in particular the
CDS instrument description. Note that each instrument will have its own SUPID in its
respective SFDU. Additional DDRID entries not shown in Figure 3 include NSSD0006, which
indicates that the data is in FITS format, and CCSD0006, which indicates that the Parameter
Value Language (PVL) formalism is being used.

Each of the FITS files created from the CDS software will have an SFDUADID keyword in the
header. For all CDS data, this SEFDU ADID will be

[SFDUADID = NSS5D0229. |

3.3 Revising the SFDU Registration Forms

Should any new descriptions or FITS keyword definitions need to be added the SFDU, only those
individuals who have been designated on the previous SFDU registration (or update) forms (i.e.,

14

uondrsap

SAD/OHOS
jeuLioy SLIA

uondrsap SAI/OHOS
6ZTOASSN WoLy Sqad

‘o3 ‘goelfqo siId
SAD/OHOS Inoge 3xo3
TejuswaTddng

2000 s dsOD

spaomday SLIA
Jo AaeuoTioTqg

2000 & dsOD

8E£20dSSN=AId4dNs
9000dssSN=aI¥aqa
62200SSN=UWVYNJIQaVY

2

,I9iIew sosn,,

J

TAd

TAd

309lqo xsput
Inoqe 3x°3
Tejuswatddng

€000 s dsoOd

8E€Z20dSSN=AIdNs

6220dSSN=AdIqua

9000asd0O0=adI3aa
82Z200SSN=UWVNAIQY

2

.I93Iew sosn,,

J

8330dSSN uondriosaq

‘Lgo A 30 -uzsqg
AxeuoTioTd OHOS

€000 & dsOD

9000asd0O0=adI3aa
LZ2Z200SSN=UWVYNAIQaY

2

.I93Iew sosn,,

J

090
(8#) o1 SLIA
(G#) o1'd SLIA

uL# 9Tl JO puUd,,
230

,I9iIew sosn,,

n

Alll

senTeA
pue paomisy

8220 M dSSN

u * OTTIF.=399
62200SSN=TadVY'1I

k-

,I9iIew sosn,,

n

uoTjErWIOIUT
SumToOA OHOS

LZ220 A OSSN

.Jo® auo sasn,,

4

15

6330dSSN uondrosa(q LZZOUSSN uondiiosa(q (14 o11p) dredwo, NAAS

G661-02(0-62
suorydrrosa(] pue 9ye[dwa], 3onpoid NAIS SAD-OHOS Y} JO MIIA

Figure 2: The SOHO/CDS SFDU product template flow chart as described in the text.

bax-[Lqo qeo” spo npJFs :STTJd
8€Z0dSSN :dId4ns
62200dSSN :dIgEa

box-3oTp S3IT3 SPo npIFs :9TTd
8€Z0ASSN :dIANs

e [T
:osmiomwn— STTOASSN -HINVNAIAV
1 § uondrsa(TAd/SIIA
ot SLLTSAY/OHOS 1300(qQ Sorere) S@O/OHOS

I
I
N I
I
I

; v

box-30TPp ToA np3s :oTTA4

90000SJ0 :QI¥AQ bex osep spo np3s :oTT

LTTOASSN “HINVNAIAV S8ETOASSN “HINVNAIAV
uoT)dII9s9(] PIOMADY] SWINJOA uonydriosa(] yuewrna)suy SAD/OHOS

G661-9°9(-62
sjexoed uoryensISoy NAAS SAD-OHOS Y} JO MIIA

Figure 3: The relationship between the SOHO/CDS SFDU registration packets.

16

files) as a REVISOR can make revisions. Currently, only Drs. Art Poland, Richard Harrison, Bill
Thompson, Dave Pike, and Don Luttermoser are designated as revisors. The original SFDU regis-
tration files have a .reg0 suffix attached to the file name. To submit a revision, say the first revision
from the original registration form, copy the four *.reg0 files to files ending with .reg1:

mv sfdu_cds_cat_obj.regd sfdu_cds_cat_obj.regl
mv sfdu_cds_desc.reg0 sfdu_cds_desc.regl
mv sfdu_cds_fits_dict.reg0 sfdu_cds_fits_dict.regl
mv sfdu_vol_dict.reg0 sfdu_vol_dict.regl

Then, one can make modifications to the .reg! files and resubmit them. The old files should not
be deleted since they may be needed for reference in the future. In this way, it will be easy to keep
track of the various revisions.

When submitting a revision to the SFDU registration files, one must be sure that the unique
SOHO/CDS ADIDNAME is in the file. Before submitting an updated revision, be sure to modify
the REVISOR group in the registration/update form if you wish to add or remove the names of
those people who can make future revisions. Also note that the person who is making the revisions
to the SFDU registration form must include his name in the REGISTRANT group section. Once
the modifications to the registration/update form are complete, email the form to John Garrett of

the NSSDC at
caoprod@nssdca.gsfc.nasa.gov

and he will reply when the revision has been recorded.

4 The FITS Files

As mentioned earlier, all telemetry data from the CDS will be stored in FITS format. A detailed
description of these FITS files can be found in the CDS Software Notes #3 Converting C'DS
Telemetry to FITS Files, #4 IDL Software for FITS Binary Tables, and #11 Converting CDS
Calibration Telemetry to FITS. The following tabulations contain the FITS keywords that have
been registered with the CCSDS as of this printing. The value type that can be associated with
each keyword is presented in square (i.e., []) brackets: [INT] = integer, [LONG] = long integer,
[FLOAT] = single precision real, [DOUBLE] = double precision real, [STRING] = string of ASCII
characters, and [LOGICAL] = logical value (“T” for true and “F” for false).

17

FITS keywords that are always present:

ANGLE
BITPIX
CATEGORY

CMP_NAME
CMP_NO
COMP_ERR
COMP_ID
COMP_OPT
DATE
DATE_OBS
DATE_END
DETECTOR

DW.ID
EV_ENAB
EXPCOUNT
EXPTIME
EXTNAME
FILENAME
GCOUNT
INS_ROLL
INS_X0
INS_YO
INSTRUME

IXWIDTH

IYWIDTH
LL_ID
LL_DESC
MIR_POS
NAXIS
NAXIS1
NAXIS2
NWINDOWS
NX

NY

OBJ_ID
OBJECT
OBS_MODE

OBS_PROG
OBT_TIME
OBT_END

Preliminary orientation of field-of-view (i.e., instrument) to solar north [FLOAT]
Number of bits per pixel for the data [INT]

Study category: ”T” for Test, 7S” for science, 7C” for calibration — implied by
STUDYID [STRING]

Campaign name (if applicable) [STRING]

SOHO campaign ID number (if applicable) [INT]

True (T) if data compression scheme error was encountered [LOGICAL]
Telemetry data compression scheme ID [INT]

Telemetry data compression option [INT]

Date FITS file was created, dd/mm/yy [STRING]

Start date/time of observation (raster) — CCSDS format [STRING]

End date/time of observation [STRING]

CDS detector: ‘NIS’ — Normal Incidence Spectrometer or ‘GIS’ — Grazing
Incidence Spectrometer [STRING]

Data extraction window list ID [INT]

True (T) if event recognition enabled, false (F) otherwise [LOGICAL]
Number of exposures in the raster [INT]

Exposure time in seconds [FLOAT]

‘DATA” if FITS contents is scientific data, etc. [STRING]

FITS filename on originator machine w/o extension or path [STRING]
Group count [INT]

Instrument roll angle (from calibration) [FLOAT]

Instrument origin pointing (legs) X-axis [FLOAT]

Instrument origin pointing (legs) Y-axis [FLOAT]

The instrument onboard SOHO for which the data were taken, i.e., ‘CDS’ =
Coronal Diagnostic Spectrometer [STRING]

Size of instrument field of view in X direction — calculated from the pointing
information, data window tables, and binning factors [FLOAT]

Size of instrument field of view in Y direction [FLOAT]

Line list ID number — implied by DW_ID [INT]

The name of the line list used — implied by DW_D [STRING]

Mirror position at start of raster [INT]

Number of axes for the data (=2 for image) [INT]

Array size in X direction [LONG]

Array size in Y direction [LONG]

Number of data extraction windows [INT]

Number of steps in X direction [INT]

Number of steps in Y direction [INT]

Object ID (if applicable) [INT]

Type of object or event observed [STRING]

Observing mode — a character string combining the values of DETECTOR,
SLIT_NUM, RAS_ID, and EXPTIME, e.g., ‘NIS-S1-R3-E100° [STRING]
Name of the study — implied by STUDY D [STRING]

Onboard start time [DOUBLE]

Onboard end time [DOUBLE]

18

OPSLBITS

OPSRBITS
OPS_L
OPS_R
ORIGIN
PCOUNT
PROG_ID
PROG_IND
PROG_NUM
PROGNAME
RAS_ID
RAS_VAR
SC_ROLL
SC_X0
SC_Y0
SCI_OBJ
SCI_SPEC
SER_ID

SEQ_IND
SEQ_NUM

SEQVALID

SFDUADID

SIMPLE
SLIT_NUM
SLIT_POS
STUDYVAR
STUDY_ID
TELESCOP
TFIELDS
TITLE
TITLE_ID
TRACKING

WAVEMAX
WAVEMIN
XCEN
XSTEP
XTENSION
YCEN
YSTEP

OPS L status bits at start of raster, as a character string of ‘0’s and

‘s [STRING]

OPS R status bits at start of raster [STRING]

OPS L position at start of raster [INT]

OPS R position at start of raster [INT]

Institute where file was written: SOHO-EOF or RAL [STRING]

Random parameter count [INT]

Observing program ID, linking studies together [LONG]

Repeated study index [LONG]

Study counter number [LONG]

Observing program name, if applicable [STRING]

Raster ID number — determined from STUDY_ID and SEQ_IND [LONG]
The raster variation index [INT]

Spacecraft roll [FLOAT]

Spacecraft X-direction pointing [FLOAT]

Spacecraft Y-direction pointing [FLOAT]

General science objective [STRING]

More specific science objective [STRING]

Onboard sequence load 1D — taken from the “Sequence ID” in the telemetry
stream [LONG]

Raster index within the study [INT]

Unique number of each file. This number is intended to serve as a unique
identifier to a specific instance of a raster. Each data file generated

by a CDS raster would have a unique value of SEQ_NUM [LONG]

True (T) if the raster contains useful data. One possible use of this keyword is
to signal whether or not the pointing was changed during the execution of the
raster. If so, then the software will need to be able to distinguish between
solar feature tracking and true pointing changes [LOGICAL]

SFDU Authority and ADID label of INSTRUME, i.e., 'NS5D0229’ for the CDS
[STRING]

First header line of all standard FITS files [LOGICAL]

The number of the slit used [INT]

Slit position at start of raster [INT]

Study variation index [INT]

The study ID number of the program [LONG]

Name of the telescope, i.e. 'SOHO’ = Solar Heliospheric Observatory [STRING]
Number of data columns in the binary tables [INT]

Study title [STRING]

Study title ID [LONG]

Solar feature tracking: True (T) if solar feature tracking is used, otherwise
false (F) [LOGICAL]

Maximum wavelength observed in Angstroms [FLOAT]

Minimum wavelength observed in Angstroms [FLOAT]

Preliminary center in X—direction of field-of-view [FLOAT]

Step size in arcsec in X direction [FLOAT]

First header line of binary table FITS files, typically set to 'TBINTABLE’ [STRING]
Preliminary center in Y-direction of field-of-view [FLOAT]

Step size in arcsec in Y direction [FLOAT]

19

Keywords present only for VDS data:

VDS_ACC
VDS_MODE
VDS_ORI
VDS_PMCP

True if VDS is operated in accumulate mode [LOGICAL]
VDS readout mode [STRING]

True if VDS telemetry data oriented by columns [LOGICAL]
VDS MCP programmable voltage setting [INT]

Keywords present only for GIS data:

BUGHV1
BUGHV2
BUGHV3
BUGHV4
BKGCHK1
BKGCHK?2
BKGCHK3
BKGCHK4
BIGMCP1
BIGMCP2
BIGMCP3
BIGMCP4
BUGMCPB1
BUGMCPB2
BUGMCPB3
BUGMCPB4
BKGRCD1
BKGRCD2
BKGRCD3
BKGRCD4
BKGULCD1
BKGULCD2
BKGULCD3
BKGULCD4
BKGHVI1L
BKGHV2L
BKGHV3L
BKGHVA4L
BKGLDLD1
BKGLDLD2
BKGLDLD3
BKGLDLD4

High voltage, detector 1 [FLOAT
High voltage, detector 2 [FLOAT
High voltage, detector 3 [FLOAT
High voltage, detector 4 [FLOAT
Lookup table checksum, detector 1 [LONG]
Lookup table checksum, detector 2 [LONG]
Lookup table checksum, detector 3 [LONG]
Lookup table checksum, detector 4 [LONG]
High voltage current, detector 1 [FLOAT]
High voltage current, detector 2 [FLOAT]
High voltage current, detector 3 [FLOAT]
High voltage current, detector 4 [FLOAT]
MCP F/face, detector 1 [FLOAT]
MCP F/face, detector 2 [FLOAT]
MCP F/face, detector 3 [FLOAT]
MCP F/face, detector 4 [FLOAT]
Raw event count, detector 1 [LONG]
Raw event count, detector 2 [LONG]
Raw event count, detector 3 [LONG]
Raw event count, detector 4 [LONG]
Upper level discriminator count, detector 1 [LONG]
Upper level discriminator count, detector 2 [LONG]
[]
]

[S B e

Upper level discriminator count, detector 3 [LONG
Upper level discriminator count, detector 4 [LONG
High voltage last set value, detector 1 [FLOAT]
High voltage last set value, detector 2 [FLOAT]
High voltage last set value, detector 3 [FLOAT]
High voltage last set value, detector 4 [FLOAT]
Last setting low level discriminator, detector 1
Last setting low level discriminator, detector 2
Last setting low level discriminator, detector 3
Last setting low level discriminator, detector 4

FLOAT]
FLOAT]
FLOAT]
FLOAT]

——— —

20

Binary table column headers — note that the “n” in these keywords represent integers which
associates the given keyword to the specific column

[T39 S R A)

n”, “n” always starts from 1:

TFORMn Data format and number of data points [STRING]
TTYPEn Label for data [STRING]

TDIMn Dimensions [STRING]

TDESCn Dimension labels [STRING]

TCUNIn Units along each of the dimensions [STRING]
TRPIXn Reference pixel position [STRING]

TRVALn Axes values at reference point [STRING]
TDELTn Pixel spacing along axes [STRING]

TROTAn Rotation angle of dimensions [STRING]

TUNITn Units of the data [STRING]

TNULLn Data missing flag value [LONG]

TDMINn Data minimum value [LONG or FLOAT depending on TUNITn]
TDMAXn Data maximum value [LONG or FLOAT depending on TUNITn]
TDETXn Start column on detector [INT]

TDETYn Start row on detector (NIS detector only) [INT]
TBINXn Detector binning across columns [INT]

TBINYn Detector binning across rows [INT]

TWAVEn Principle wavelength of first order [FLOAT]
TWMINn Minimum wavelength of first order [FLOAT]
TWMAXn Maximum wavelength of first order [FLOAT]
TWBNDn Wavelength band (NIS: 1 or 2, GIS: 1 to 4) [INT]
TGORDn Grating order [INT]

5 The MAGTAPE Procedure

This section describes the MAGTAPE procedure in detail. This routine is the main driver of the
tape I/O. One would directly run this procedure from a non—X-window terminal. If you have access
to an X—window terminal, it is recommended that you use XWINTAPE to drive MAGTAPE. The
call to MAGTAPE has the following form:

MAGTAPE, UNIT, TYPE, SFDU, BLFAC, FILES, XWSTR, NOSFDU=NOSFDU,
DISK=DISK, NAME_TYPE=NAME_TYPE, OUTPUT=0UTPUT, UNIXMT=UNIXMT,
XWIDGET=XWIDGET, ERRMSG=ERRMSG

The following table describes each of these parameters, note that many of these parameters are
optional (key: I = input, I* = optional input, O = output, O* = optional output, K = optional
keyword):

21

UNIT:

TYPE:

BLFAC:

FILES:

(D

(D

(1)
(1)

Tape unit number. Must be set by the following commands prior to
entering IDL (see §2.1 The Tape Drive Name:

VMS:

Unix:

‘write’:
read’:

ALLOCATE MUAQ: (assuming MUAQ: is a tape drive)
MOUNT/FOR MUAO:

DEFINE MT1 MUAQO: (in this example, UNIT = 1, possible
values: MTO ... MT9, relate to UNIT =0 ... 9)

setenv MTO /dev/nrmt0 (assuming /dev/nrmt0 is a tape
drive, in this example, UNIT=0)

Write FITS files to the tape.
Retrieve FITS files from the tape.

Blocking factor (1-10) = # of 2880 byte records per block [DEFAULT = 1].

This parameter can either be:

(1)

For TYPE = ’read’:
A vector of tape file numbers [INT] (or names [STR]) to be
read off of the tape.

(a) If tape file numbers [INT] are given, then the disk filenames

are constructed as described under the keyword “NAME_TYPE”.

sk ok sk o ook ok ok o o o ook ook ok sk sk sk sk sk ok o o ok o ok o ok ok o
NOTE: The first file may contain the SFDU Header File. If so,
consider its Tape File Number to be “0”, so that the first FITS file is
Tape File #1 (i.e., input your tape file location integers as though
this header file didn’t exist — FITS File #1 = Tape File #1).

If NO SFDU header file exists on the tape, the first file (now a FITS
file) is STILL Tape File #1.

ok sk ok ook ok sk stk o sk sk ot o skok sk oo sk stk sk stk ok skok sk ook sk stk ok skok ok skok ok otk ok ok ok

(b) If tape file names [STR] are given, then the names supplied
are compared with the names in the SFDU header file:

Form: SFDU_LG for Unix, VMS, and MacOS.

Form: SFDU_SM for DOS.

(c) If not supplied, the program will read the entire tape and
place the contents in the directory associated with DISK using
disk names as described by the keyword NAME_TYPE.

For TYPE = "write’:

A string vector that contains all of the filenames from disk
that will be written to tape. If not given, the program writes
all files in the directory assigned to DISK and named *.fits’
(or "*.FIT’ for DOS files) to the tape.

22

XWSTR:

SFDU:

NOSFDU:

DISK:

NAME_TYPE:

OUTPUT:

UNIXMT:

XWIDGET:

(I*,0%*)

A string array that contains informational text that is either displayed
to the screen or to the FILENAME widget (set to XWIDGET
internally) if XWINTAPE drives this routine. Note that this
variable is not needed for non—X-window runs. Also note that
MAGTAPE adds text to this array.

String array that contains the SFDU header created for or read from
the tape. Set to 'NONE if the /NOSFDU keyword has been set.

Do not use the Standard Formatted Data Unit labels. The default is to
use them!

MAGTAPE, 1, "write’, /NOSFDU

Name of the directory where the files are to be read or written.

MAGTAPE, 1, 'write’, DISK="/cds/data’

Naming convention for TYPE ’read’ only. Four possibilities exist:

kword:XXX’: Use information from the specified FITS keyword
XXX, (i.e., if NAME_TYPE = ’kword:filename’, then
whatever name that is associated with the FILENAME
keyword in the FITS header is used). If this keyword
is used, the input filenames in FILES (if supplied)
must contain integers of the file location on the tape.

sfdu_sm’: Use the “short name” from the SFDU header file
[DEFAULT for reads in DOS].

sfdulg’ Use the “long name” from the SFDU header file
[DEFAULT for reads in Unix, VMS, or MacOS].

tapeloc’: Use "tapennnn.fits’, where "nnnn” is the tape file
number.

Filename of an output file that contains a listing of all events that takes
place during the tape I/0O. Using /OUTPUT in the call to MAGTAPE,
forces MAGTAPE to generate its own unique filename (based on the
current time) for this log.

Override the IDL tape reading routines and simply use the Unix mt
and dd commands to access the tape (Unix systems only). Note this
is the default under Unix/IDL versions earlier than 3.1.

If set, the widget program XWINTAPE is driving this procedure and
any text that is normally printed to the screen will instead be printed
to the widget. Note that this variable is not needed for non—
X-window runs.

23

CKFITS: (K) If set, check the first file to see if the file conforms to the CDS level-1
binary FITS protocol. If so, the FITS file (and it is assumed that all other
FITS files in this directory) is valid. The default is to check the first
file for validity.
ERRMSG: (K) If defined and passed, then any error messages will be returned to the user
in this parameter rather than being handled by the IDL MESSAGE utility.
If no errors are encountered, then a null string is returned. In order to use
this feature, the string ERRMSG must be defined first, e.g.,
ERRMSG =7
MAGTAPE, 1, 'read’, SFDU, ERRMSG=ERRMSG
IFF ERRMSG(0) NE ” THEN ...

In the following two subsections, various examples will be presented for tape archive reading
and writing. Other examples already have been introduced in §2 Brief Tutorial, refer to this
section simple demonstrations. In the following subsections, assume that the tape drive name
has been associated with UNIT = 1 and that the SFDU header is contained in the string array
SFDU. WARNING NOTE: Should MAGTAPE be accessed concurrently in a single
IDL session, the passed SFDU variable should be undefined for all calls to MAGTAPE.
Otherwise, MAGTAPE assumes the SFDU has already been read from the current tape and uses
the passed SFDU to access the FITS files on the tape.

5.1 Tape Reading

FErample 1: Read all FITS files off of the tape and load to the current directory. Make a log file of
the tape I/O and use the Unix dd and mt commands instead of the IDL tape commands.

MAGTAPE, 1, 'read’, SFDU, /OUTPUT, /UNIXMT

The “/OUTPUT” keyword informs MAGTAPE to keep a log of all messages sent to the screen
and dump them to ASCII file tapennnnnnnnnnn.log, where nnnnnnnnnnn is a string of numbers
derived from the current date and time. The “/UNIXMT” keyword tells MAGTAPE to write and
run a Unix script to access the tape drive using the dd and mt¢ Unix commands.

FErample 2: Read FITS files stored on tape with names in the string array FNAMES and load
to directory “/cds/fits/readem” using the CCSDS1 (i.e., DOS-like) naming protocol. Make a log
file of the tape I/O called “fitsrdtape.log”.

FNAMES = ["eds_window1_1215.fits’, cds_window2_1500.fits’, cds_window4_1215.fits’]
MAGTAPE, 1, ’read’, SFDU, 2880, FNAMES, OUTPUT="fitsrdtape.log’,
NAME_TYPE="sfdu_sm’, DISK="/cds/fits/readem’

Since we wanted to select only a portion of the FITS files stored to tape, we had to include the
tape blocking factor (BLFAC) in the call to MAGTAPE preceding the FNAME passed variable. For
reading a tape, the blocking factor does not need to be known before a “read” is attempted. If the
loaded tape was written at 28800 (= 10 x 2880) bytes/record, the passed BLFAC value of 2880 would
not cause a crash. MAGTAPE would detect the error and make the appropriate change to BLFAC
internally and continue reading the tape. Setting NAME_TYPE to ’sfdusm’ tells MAGTAPE to
use the DOS—style filenames associated with the “$1” keyword in the REFERENCE PVL parameter
in the SFDU.

24

FErample 3: Read FITS files #1-10 and #21-27 off of the tape and load to the current directory
using the tape—file position numbers for the filenames. Don’t keep a log file.

FNAMES = INDGEN(10) + 1
FNAMES = [FNAMES, INDGEN(7) + 21]
MAGTAPE, 1, ’read’, SFDU, 2880, FNAMES, NAME_TYPE="tapeloc’

Once again, we wanted to select only a portion of the FITS files stored to the tape, so we included
a guessed blocking factor (i.e., 2880). FNAMES contains an array of integers (i.e., [1, 2, ..., 10,
21, 22, ..., 27]) which is passed to MAGTAPE. Setting NAME_TYPE to "tapeloc’ tells MAGTAPE
to make filenames associated with the “$5” keyword (i.e., the tape location, first FITS file on tape
= #1) in the REFERENCE PVL parameter in the SFDU. The stored files (17 total) will be loaded
into the current directory with names: tape0001.fits, tape0002.fits, ..., tape0027.fits.

5.2 Tape Writing

FErample 1: Write all FITS files from the current directory to the tape. Make a log file of the tape
I/O and use the Unix dd and mt commands instead of the IDL tape commands.

MAGTAPE, 1, *write’, SFDU, /OUTPUT, /UNIXMT

The “/OUTPUT” keyword informs MAGTAPE to keep a log of all messages sent to the screen
and dump them to ASCII file tapennnnnnnnnnn.log, where nnnnnnnnnnn is a string of numbers
derived from the current date and time. The “/UNIXMT” keyword tells MAGTAPE to write and
run a Unix script to access the tape drive using the dd and mt Unix commands. Since the tape
blocking factor was not passed to MAGTAPE, the default value of 2880 bytes/record is used.

Fzample 2: Write the FITS files stored in directory “/cds/fits/writeit” with names in the string
array FNAMES to tape. Make a log file of the tape /O called “fitswrtape.log”. Write the tape at
5 x 2880 bytes/record. Do not check to see if the FITS files conform to the CDS standard.

FNAMES = ["eds_window1_1215.fits’, cds_window2_1500.fits’, cds_window4_1215.fits’]
MAGTAPE, 1, write’, SFDU, 14400, FNAMES, OUTPUT="fitswrtape.log’, CKFITS=0,
DISK="/cds/fits/writeit’

Three files will be written to tape from directory “/cds/fits/writeit” (with their filenames stored
in FNAMES) at 14,400 bytes/record using the IDL tape access commands. Upon return from
MAGTAPE, an ASCII log file by the name of “fitswrtape.log” will exist in the current directory.

Frample 3: Write the 3rd through 9th FITS files in the current directory as they appear in a

directory listing. Don’t write a log file and use all defaults in MAGTAPE. Pass any error message
back through the ERRMSG variable.

ERRMSG = 7
MAGTAPE, 1, *write’, SFDU, 2880, [3, 4, 5, 6, 7, 8, 9], ERRMSG=ERRMSG

WARNING! No tape I/O will commence from this run! MAGTAPE will return with the following
error message in ERRMSG:

Passed filenames must be “strings” when writing to tape!
In order to carry out the above example, the actual names of the files must be passed to MAGTAPE:

25

ERRMSG =7
MAGTAPE, 1, 'write’, SFDU, 2880, ["cds3.fits’, eds4.fits’, eds5.fits’, 'cds6.fits’, "cds7 fits’,
"cds8.fits’, 'cds9.fits’], ERRMSG=ERRMSG

6 Widget Controls: XWINTAPE

Upon entering IDL (and assuming your session has the proper PATH environment, pointing to the
IDL/CDS software directories, set in the system or user login file), type XWINTAPE (upper or
lower case) or XWINTAPE, SFDU at the IDL prompt. In a few seconds, a large widget filled with
subwidgets (see Figure 1) will appear entitled: X WINTAPE: Read/Write FITS/SFDU Tapes. The
main widget is split into two halves: The left-hand-side (LHS) contains (from top to bottom):

o Message: text widget: Short and to-the-point information concerning the operation of the

XWINTAPE widget.

e Directory Name: text and ‘ Accept Directory | button widgets: Name of the directory where the
FITS files are to be “written to” or “read from” and a button to accept the entered directory
name.

e “Untitled” operational text widget: Initially contains a SOHO/CDS logo. Later it will contain
information concerning the current operating status of the code and filenames to be written
to or read from the tape.

¢ File Naming Convention toggle-button widget: There are 4 different mechanisms for naming
FITS files read off of an archive tape. This widget allows you to select such a naming
convention:

— : Let XWINTAPE decide on the form of the name for the FITS files read

from the tape (see below).

— |0 SFDU_small | Follow the CSSDS1 specification, where the filename can be no bigger

than 8 characters (first character must be alphabetic) with an extension no bigger than
3 characters (i.e., FIT). This is the default used under the DOS operating system.

- : Follow the CSSDS2 specification, where the filename can range any-
where between 1 and 30 characters including any extensions. Note that MAGTAPE
has been designed to keep the total filename length at 30 characters or less including
the mandatory “.FITS” extension. This is the default used under the Unix, VMS, and
MacOS operating systems.

— |0 KEYWORD |: Use a string associated with a FITS keyword. When using this option

from XWINTAPE, the keyword used is “FILENAME.” Note that this option would
probably never be used since the filename stored in the FILENAME keyword should be
the same as that associated with the SFDU _large protocol.

- ‘<> Tape Location ‘: Use the name “tapennnn.fits” for the FITS file read from the tape,

where “nnnn” is the tape number of the file (i.e., the first FITS on the tape would be
stored as “tape0001.fits”).

26

o Access Override: IDL has “built-in” functions to access a tape drive. These IDL tape com-
mands are only valid in a VMS environment. However, the SOHO/CDS group has written
procedures that emulate these commands in a Unix environment, which have the same names
as their VMS counterparts and pass the same parameters. However, the Unix versions of these
functions will not work for versions of IDL earlier than 3.1 running in a Unix environment.
When such a condition is met, MAGTAPE will automatically switch to the “Unix mt & dd
Commands” by default. Also, the SOHO/CDS staff have noted that the IDL style commands
under DEC OSF/1 Uniz sometimes will not work — the code either “freezes” or “crashes.”
This is due to an IDL bug in the /NOSTDIO keyword of the OPENU procedure.

- ‘<> IDL Style Commands | Use the IDL tape access commands. This is the default, except
for versions of IDL earlier than 3.1 running in a Unix environment.

- ‘<> Unix mt & dd Commands ‘: Use mt and dd to manipulate the tape drive in a Unix
environment.

o Valid CDS FITS?: It is the default for MAGTAPE to check the first FITS file it encounters
on a disk during a “write” for validity as a CDS level-1, binary extension FITS file. Checks
are made to insure that the FITS keywords in the file are valid in that they were registered
with the NSSDC. Further checks are made to the array sizes and data types for all columns
of data in the binary extensions of the FITS file.

- ‘<> Check FITS Validity ‘: See if the file is a valid CDS level-1, binary extension FITS file.
This is the default.

- ‘<> Ignore FITS Check ‘: Do not make the check before writing the tape or CDROM.

o “Untitled” selected files text widget: Initially contains a text “Select files from upper window
...7 When files are selected from the upper text widget box, they are displayed in this box.

Meanwhile, the right-hand-side (RHS) of the main widget contains a variety of button and
toggle—button widgets:

e | << Begin >> ‘: Click this button only after all of the options have been set. This is a dan-
gerous button since it instructs XWINTAPLE to access the tape drive through the procedure
MAGTAPE. Due to its importance, clicking this button activates another widget that checks
to be sure that you really want to access the tape at this time.

o Tape Access: Click either ‘ ¢ Read ‘or ‘ o Write ‘, whichever is appropriate for the desired action.
Note that this is a toggle switch — both cannot be depressed at the same time.

. : This is a “pull-down” menu listing MT0, MT1, ..., MT9. Select one of the 10
entries based upon the environment value you set for the tape drive name before entering

IDL. The default is MTO.

. ‘Blocking Factor ‘: This is a “pull-down” menu listing the tape blocking factor: 1*2880
bytes/record, 2*2880 bytes/record, ..., 10*2880 bytes/record. The default is 1*2880 bytes/record
for writing a tape and is determined from the tape itself for a read (except for the Unix mt &
dd Commands access type, where it must be entered manually).

e Session Log: Make a log file of the current tape archiving session. Default is , make a
log file.

27

o Tape Header: Will (or does) the tape contain a SFDU header file (i.e., first file on the tape)?
The default is it does. This switch allows you to read or write standard FITS tapes
(i.e., those without an SFDU header).

e Save SFDU File?: Do you wish to save the SFDU in a disk ASCII file? Default is .
Note that the SFDU can also be accessed by passing a variable in the call to XWINTAPE
(e.9., XWINTAPE, SFDU, where SFDU contains the SFDU header).

o |FITS Header || Initially this widget button is inactive, but once the disk, where the FITS
files are located, is selected (for type Write) or the SFDU header is obtained from the tape

(for type Read), the button becomes active. It then can be pressed, which activates another
widget containing the names of all the FITS files in the top unnamed text box. The FITS
header for each file can be viewed by selecting the appropriate file. This may be useful when
only certain types of files are desired.

o : Clicking this widget button starts another widget that contains a detailed description
of the information displayed in the Message: widget box.

o “Untitled” picture widget: Contains the SOHO logo and remains inactive for the entire session.
. : Press this button if you wish to stop XWINTAPE without accessing the tape.

o | #4 Exit ## |1 This widget button remains inactive until MAGTAPE has successfully re-
turned to XWINTAPE. Click this button to leave the XWINTAPE widget session.

7 HELP! — Archiving Problems that may Arise

The use of SFDUs on the archive tapes requires that an archiving run cannot have multiple volume
tapes or CDROMs (i.e., if you fill up one tape, a second tape cannot be mounted for continuing the
archive). That is, each archive tape must contain an SFDU header file at the beginning
of the tape. But a question arises, How many FITS files, including the SFDU file, can be stored to a
tape before filling it up? This is not an easy question to answer, especially on Unix machines, where
their are a multitude of available tape drives, each with their own density. Exabyte tape drives
come in a variety of densities, the most popular being 2.4 Gbyte, 5 Gbyte, and 7 Gbyte, with the
7 Gbyte capacity being more and more popular.

Although the procedure that creates the SFDU calculates the total number of bytes that will
be loaded to the tape, their is currently no check to warn the user that a tape will be overfilled
upon completion of the write. Once the archiving is in operation and archiving tape drives are
defined, such a check will be installed in MAGTAPE in the future. Until that time, always be
knowledgeable of the total bytes being sent to the tape.

The CDS staff has noted that the Unix IDL procedures that simulate the VMS IDL tape
accessing commands (i.e., TAPRD, TAPWRT, REWIND, SKIPF, WEOF), do not always work on
Digital machines running OSF/1. MAGTAPE either “crashes” or “freezes” during such instances.
This is due to a “bug” in the /NOSTDIO keyword in the OPENU command that is used to access
the tape drive. Note that this does not seem to be a problem on Sun machines. Should you be
operating in an OSF/1 or DEC-UNIX environment and you experience problems with the IDL—
style tape accessing commands, exit the current IDL session, restart IDL, and rerun XWINTAPE

28

or MAGTAPE. This time, however, use the Unit mt & dd Commands protocol to read or write the
tape. Hopefully, future versions of IDL will fix this bug.

Acknowledgements. Portions of the introduction were written by Dr. William Thompson in his
document A Proposal for Storing FITS Files on Disk and Tape Archive and Distribution Media
Using SFDUs. 1 thank him for his permission for the use of this text. This work was supported by
the NASA contract NAS 5-32350 to the Applied Research Corporation.

29

Appendix A: Procedures Needed for Tape Archiving

The table below summarizes all of the procedures and supplementary data files need for a tape
archiving session. Run the IDL procedure DOC_LIBRARY to gain future information of each IDL
procedure. If a procedure is identified as being called by XWINTAPE, then it is used only for the
widget control program xwintape.pro.

magtape.pro
sfdu_2fhd.pro
sfdu_bytes.pro

sfdu_fitshd.pro

sfdu_fsize.pro
sfdu_getreg.dat
sfdu_getreg.pro
sfdu_help.pro
sfdu_make.pro

sfdu_os.pro

sfdu_qwidg.pro
sfdu_read.pro

sfdu_volhd.pro

sfdu_write.pro
soho_cds.logo

soho lglogo.gif
soho_smlogo.gif
unixdd.pro

xwintape.pro

The main tape driver procedure (see §5).

Extract the FITS header from the SFDU. Called by XWINTAPE.

Set various byte size parameters used for SFDU tape 1/0.

Called by MAGTAPE.

Retrieve all primary FITS headers from disk files. Called by XWINTAPE.
Ascertain the total bytes in the FITS files for tape 1/0.

Called by MAGTAPE.

Data file containing the location of the SFDU registration files.

Called by SFDU_GETREG.

Determine the name and location of the SFDU registration files.

Called by MAGTAPE.

Return a detailed description of tape archiving. Called by XWINTAPE.
Generate an SFDU header from the passed filenames. Called by MAGTAPE.
Load the operating system information into variables.

Called by both MAGTAPE and XWINTAPE.

Make XWINTAPE widgets sensitive or insensitive.

Read the SFDU file off of the tape and return the filenames found.
Called by both MAGTAPE and XWINTAPE.

Generate the Volume Description text for a SFDU header file.

Called by MAGTAPE.

Write the SFDU file onto the tape. Called by MAGTAPE.

ASCII text file containing the SOHO/CDS logo used in the “untitled”
upper text widget. Used by XWINTAPE.

GIF file containing the official SOHO logo and used in the “untitled”
draw widget for DEC machines. Used by XWINTAPE.

GIF file containing the official SOHO logo and used in the “untitled”
draw widget for Sun machines. Used by XWINTAPE.

FITS tape I/O using the Unix dd and m¢ commands.

Called by MAGTAPE.

Widget procedure that drives MAGTAPE (see §6).

Beside these specific archiving procedures, MAGTAPE also makes use of the standard FITS I/0
routines. These routines are located in the util/fits and util/util directories and are summarized in
the following table.

num?2let.pro
fxtaperead.pro
fxtpio_read.pro
fxtapewrite.pro
fxtpio_write.pro

Returns a letter (’a’, ’b’) from an integer (1, 2).

Copy FITS files from tape to disk.

Copy FITS files from tape to disk — internal routine for FXTAPEREAD.
Copy FITS files from disk to tape.

Copy FITS files from disk to tape — internal routine for FXTAPEWRITE.

30

