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ABSTRACT

Spectra, such as astrophysical spectra, can provide detailed diagnostics on the state of their emitting volume.
Emission-line diagnostics are found by assuming a model for the spectral emission line and then fitting the model to
the data. It is shown for Poisson noisy emission-line data, via the application of Cramér-Rao lower bounds, that
there are limits to the precision that line fitting can achieve. The limits depend on the spectral line model and the
noise properties of the data. A Cramér-Rao lower bound treatment introduces a framework in which questions of
line fitting in particular and spectrometers in general may be posed. Some example applications are given and their
implications for the design of spectrometric observations are discussed.

Subject headings: instrumentation: spectrographs — methods: analytical — methods: statistical —
Sun: transition region — Sun: UV radiation

1. INTRODUCTION

Astrophysics, like many other sciences, makes extensive use
of spectrometers to measure emission lines. By modeling com-
mon approaches to the problem of fitting an emission-line
model to spectral data and using Cramér-Rao lower bound theory,
a framework can be constructed in which questions concerning
the precision limits of idealized experiments can be answered.

Consider an experiment in which multiple measurements of
the same quantity are made. Each time the experiment is run, the
value observed is a sample from the distribution of measure-
ments possible. The experiment is said to be precise if a ‘‘large
proportion’’ of the samples lie ‘‘close’’ to the sample mean. In
addition, the experiment is said to be accurate if the sample
mean is ‘‘close’’ to the true value (the meaning of ‘‘close’’ is
deliberately vague, since this depends on the purpose of the
experiment). This definition of precision does not imply that
a precise experiment need be accurate, since the sample mean
could be very far from the true value yet be very precisely mea-
sured. Systematic errors in the experiment setup are one reason
why a precise experiment need not be accurate.

One way of measuring whether a large proportion of the sam-
ples are close to the sample mean is to calculate the standard
deviation of the experiment; smaller standard deviations imply
that the experiment is more precise. The standard deviation is an
unbiased estimator of the square root of the true variance of the
distribution from which the measurements are drawn. Cramér-
Rao lower bound theory (Rao 1945; Cramér 1946; Kendall &
Stuart 1973) describes lower limits to the true variance and so
can be interpreted as describing precision limits to experiments
(Barford 1985). Experimental accuracy is not commented on, be-
ing outside the scope of applicability of theCramér-Rao formalism.

The Cramér-Rao lower bound approach allows one to include
the spectrometer itself in consideration of the line-fitting problem,
and thus an exploration of the applicability of Cramér-Rao lower
bounds to line fitting is also an exploration into the effect the
spectrometer itself has on the information we can derive. An ex-
ample of this can be found in Winick (1986), in which a Cramér-
Rao lower bound argument is used to find the optimum pixel size
such that the precision with which the location of a Gaussian
emission line is maximized. Larger pixel sizes allow more pho-

tons to be collected and so the signal-to-noise ratio in each pixel
is smaller. However, smaller pixels allow the line position to be
better determined because there are more pixels per unit wave-
length. The playoff between these two competing demands results
in an optimum pixel size. Related questions of interest can be an-
swered using the combination of an emission model, a spectrom-
eter model, and Cramér-Rao formalism.
Some previous work does exist concerning the errors in

the Gaussian parameters when fitting a Gaussian to noisy data.
Landman et al. (1982) discuss the error associated with fitting a
Gaussian emission line under the simplifying assumptions that
(1) the data consist of a single emission line, (2) all data asso-
ciated with the line have the same Gaussian distribution, and
(3) the pixel width is much smaller than the line width. Lenz &
Ayres (1992) expand this treatment to cases inwhich the Gaussian
profile is subject to different noise properties via a Monte Carlo
approach, but do not include a theoretical treatment. The Cramér-
Rao approach creates a theoretical framework of some useful
generality.

2. FORMALISM

2.1. Maximum Likelihood and the Cramér-Rao Lower Bound

A spectrometer observes an intensity emission profile D ¼
D1;D2; : : : ;DNd

f g over Nd channels at x ¼ x1; x2; : : : ; xNd
f g.

The features in the spectra, such as emission lines, background
emission, and artifacts, are described using a total of Nv varia-
bles, where Nv < Nd . Hence, fitting the observed spectrum with
Nv < Nd variables becomes an optimization problem. The vari-
ables form a set V, and describe the number of counts per chan-
nel through an appropriate choice of function F(x;V )� Fi(V ). It
is up to the observer to pick an F and V that adequately describe
the emission spectra for their particular purpose. For example, in
solar applications the choice is complicated by the fact that many
solar plasmas are inhomogeneous in density, temperature, ionic
composition, etc. In addition, the plasma is temporally inhomo-
geneous over the integration time of the exposure and spatially
inhomogeneous along the line of sight and across the field of
view. The values found for the variables V are almost inevitably
weighted averages of the true range of values in the observed
emitting volume. This paper does not address the relation of the
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spectrum to the true physical state of the emitting volume.
However, once the observer has chosenF(x,V ) the precisionwith
which the variables V can be determined is, as is shown below,
calculable. Discussion of the particular choice of F and V is de-
ferred until x 3.

The variable setV describes the spectrum observed. Multiple
observations show that the data Di in each channel is noisy, and
since the spectrum is described by V, the noise in each channel i
can be described by some normalized probability distribution
fi (Di|V ). Assuming that the distribution function in each chan-
nel is independent of every other distribution function, the over-
all probability distribution function is therefore

L(D;V ) ¼ f1(D1jV ) f2(D2jV ) : : : fNd
(DNd

jV ): ð1Þ

The function L is known as the likelihood function (LF). The
maximum likelihood principle directs us to choose the value of
V, V0 , such that for any admissible value of V̂

L (D;V0)� L (D; V̂ ): ð2Þ

In practice it is common to use the log likelihood function to
look for V ¼ (V1; : : : ;VNv

) such that

@ log L

@Vj

¼ 0; 1� j� Nv: ð3Þ

Ṽ is a maximum of equation (1) if the matrix

@ 2 log L

@Vp@Vq

� �
Ṽ

ð4Þ

is negative definite where 1� P; q � Nv.
Take t as an unbiased estimator of some function of V, say

�(V ). It can be shown that (Kendall & Stuart 1973)

var (t) �
XNv

p¼1

XNv

q¼1

@�

@Vp

@�

@Vq

I�1; ð5Þ

where I is the (Fisher) information matrix,

Ipq ¼ E
@ log L

@Vp

@ log L

@Vq

� �
¼�E

@ 2 log L

@Vp@Vq

� �
; ð6Þ

where E(.) denotes the expectation value of the parenthetical
quantity (evaluation at the global maximumV0). Equation (5) is
known as the Cramér-Rao inequality for a multivariate estima-
tor. It expresses the fact that the variance var(t) of an unbiased
estimator of the function �(V ) is bounded below. If the function
is set to one of the emission model variables, then the theorem
says that any unbiased estimator used to estimate the value
of the variable has a minimum attainable variance. This implies
that there is a limit to the precision of an experiment measur-
ing the variables V via the emission model F(x,V ). To evaluate
equation (5), note that

@ 2 log L

@Vp@Vq

� �
V0

¼ E
@ 2 log L

@Vp@Vq

� �
; ð7Þ

that is, the expected value of @ 2 log L=@Vp@Vq occurs at
the global maximum of the likelihood function. This defines a
formally simple procedure for finding precision limits to an ex-
periment. One finds V0 and then evaluates equation (5) using
equation (7). Finding V0 is a global optimization problem and is,
in general, nontrivial, although good estimates may be found by
common line-fitting routines. For demonstration purposes (x 3),

however, test cases are used in which the value of V0 is known,
i.e., everything is known about the emission. The remaining
pieces of the framework needed to describe spectrometer ex-
periments in a Cramér-Rao formalism are described below.

2.2. Emission Model and Poisson Noise

Attention is restricted to noise arising from the statistical
nature of the emission process from the emitting region. Other
sources of measurement error (both statistical and systematic)
are not considered, since one source of error is sufficient to dem-
onstrate the applicability of the Cramér-Rao formalism. The emis-
sion in solar plasmas is assumed to follow Poisson statistics, and
so if channel i measures Di counts, then the distribution function
fi in each channel is

fi(DijV ) ¼ ½Fi(V )�Di

Di!
exp �Fi(V )½ � ð8Þ

for some emission model Fi (V ). Subsequently,

log L ¼
XNd

i¼1

Di log ½Fi(V )� � ½Fi(V )� � log (Di!); ð9Þ

and so the p, qth element of the information matrix is

Ipq ¼
XNd

i¼1

1

Fi (V )

@Fi(V )

@Vp

@Fi(V )

@Vq

; ð10Þ

which is evaluated at V ¼ V0. The observer is interested in the
value of emission model variables, Vk (1� k � Nv), and so
� ¼ Vk . Then any unbiased estimator t of Vk must have

var (t) � I�1
� �

k k
; ð11Þ

where the right-hand side of this equation is the Cramér-Rao
lower bound to var (t).

The emission model describes features in the spectrum. In
solar physics, it is common to assume that the emission lines
have a Gaussian shape and that the background emission has a
quadratic dependence on wavelength (or its proxy, position on
the detector x ¼ x1; x2; : : : ; xNd

f g). Hence,

Fi(V ) ¼ �þ �xi þ �x2i þ
XNg

j¼1

Aj exp � (xi � cj)
2

2�2
j

" #
; ð12Þ

where V ¼ �; �; �;A1; c1; �1; : : : ;ANg
; cNg

; �Ng

� �
is the set of

variables with which we describe the emission features in
the spectrum. Values to the variables V are found by fitting the
model equation (12) to the data D, for example, by the method
of least squares.

The final component in the description of an experimental
setup is to model how the spectrometer is operated. To do this,
the operation of the Coronal Diagnostic Spectrometer (CDS;
Harrison et al. 1995) on board the Solar and Heliospheric Obser-
vatory (SOHO) is taken as a template of spectrometer operation.
CDS is an extreme-ultraviolet spectrometer coveringwavelengths
in the range 150–800 8 using two spectrometer systems. The
Normal Incidence Spectrometer (NIS) has two gratings that dis-
perse twowavelength ranges, 308–3818 (NIS1) and 513–6338
(NIS2) (the Grazing Incidence Spectrometer observes spectra in
four wavelength ranges, 151–221, 256–338, 393–493, and 656–
7858). Light is admitted to theNIS via a slit, and images are built
up by rastering the slit across the target. In eachNIS study the entire
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wavelength range mentioned above is exposed to the CCD but
only portions of the exposed CCD are stored because of memory
requirements. This fixes a range to x and dataD, which ismodeled
by equation (12). Example applications of the Cramér-Rao for-
malism are based on the Fe xvi k360.76 emission observed by
CDS in the execution of the SYNOP_F (ver. 1) study. In this study,
a window of emission from 360.123 to 361.3868 is observed us-
ing 18 pixels and is modeled using a constant background emis-
sion (� ¼ 114 photons pixel�1) and a single Gaussian emission
line (A ¼ 1434 photons pixel�1, � ¼ 1:62 pixels) usually cen-
tered in the window (c ¼ 0:0 pixels, unless otherwise specified).

The applications below are not intended to model the pre-
cision behavior of CDS, but are intended to demonstrate the
range of applicability of a Cramér-Rao approach to describing
the precision aspects of general spectrometer experiments.

3. APPLICATION OF THE CRAMÉR-RAO
LOWER BOUND

The formalism above allows one to examine the precision
possible in a number of different scenarios. Section 3.1 dem-
onstrates the dependence of the Cramér-Rao lower bound on
the number of unknowns in the system. Sections 3.2, 3.3, and
3.4 looks at the dependence of minimum variance on how the
emission line is sampled. Section 3.5 examines the dependence
of minimum variances on the signal-to-noise ratio, while x 3.6
compares the results of multiple fittings using different fitting
routines to the Cramér-Rao lower bound. Finally, x 3.7 shows
that a Cramér-Rao lower bound analysis can be used to design a
spectrometer observation such that the standard deviation in the
total integrated intensity is minimized, that is, the experiment is
optimized to be as precise as possible.

3.1. Number of Unknowns

The most fundamental parameter in the formalism is the
number of unknowns in the model. This expresses what is
certain and what is unknown and therefore to be experimen-
tally determined. To illustrate this, a spectrum is modeled as a
constant background plus one Gaussian, a special case of equa-
tion (12) with � as the only unknown to be determined by fit-
ting. If Fi(V ) ¼ �þ Agi , for gi ¼ exp �(xi � c)2=(2�2)

� �
, then

I11 ¼
XNd

i¼1

1

�þ Agi
ð13Þ

leads to

min var (�) � v�;1 ¼ 1=I11 � �=Nd; ð14Þ

which is the minimum achievable variance in measuring the
background in the presence of a known emission line is greater
or equal to the variance expected from Nd measurements of a
constant value � subject to Poisson statistics; it is clear that the
greater noise due to the emission line causes this. Similarly, if
the Gaussian amplitude is the only unknown, then

I22 ¼
XNd

i¼1

g2
i

�þ Agi
ð15Þ

and the Cramér-Rao lower bound is

min var (A ) � vA;1 ¼ 1=I22 � A=Nd; ð16Þ

where the right-hand side is the variance expected from Nd

measurements of a constant value A subject to Poisson statis-
tics. Consider now the effect of having both � and A unknown

in the emission model Fi(V ) ¼ �þ Agi . The information ma-
trix is 2 ; 2 in this case,

I ¼
I11 I12

I12 I22

� �
; ð17Þ

where I12 ¼
PNd

i¼1 gi= �þ Agið Þ. Hence, we have

min var (�) ¼ I22

I11I22 � I 212
� v�;1 ð18Þ

and

min var (A) ¼ I11

I11I22 � I 212
� vA;1: ð19Þ

The presence of another unknown increases the minimum var-
iances attainable: the experiment has become less precise. For a
nonzero Gaussian the experiment is strictly less precise than in
the one variable unknown case.

3.2. IncreasinggWindow Size

The idealized spectrometer setup described in x 2.2 allows
the user to return portions of the solar spectrum that illumi-
nate the detector. Awindow width and location is defined, and
the emission in that window is taken as the emission spec-
trum. Clearly, the width of this window (Nd) affects the amount
of information available on the emission line and therefore the
achievable precision. The right-hand side of equation (11) is
calculated for increasing values of Nd and plotted in Figure 1;
also plotted are the variances derived from the results of fitting
210 simulated emission spectra at different window widths. Sta-
tistical fluctuations aside, the simulation-derived values follow
the theoretically predicted behavior.
The emission-line amplitude, width, and position precisions

quickly asymptote to fixed values as a function of window size.
The background emission, however, continues to decrease as a
function of window width, varying approximately as 1/Nd . The
difference in behavior between the background and the other

Fig. 1.—Precision as a function of window width (see x 3.2) for Fe xvi

emission line (x 2.2) properties (Gaussian amplitude A, solid line; line position
c, dashed line; Gaussian width �, dot-dashed line; constant background, �,
triple-dot–dashed line). The vertical dotted line shows the size of the window
used in CDS. Also shown is a power-law fit of the form N �

d (long-dashed line) to
the background variance, annotated with the value of the power-law index �.
The plot symbols (Gaussian amplitude, plus signs; line position, asterisks;
Gaussian width, diamonds; constant background, triangles) show variances
derived from 210 spectrum fits at sample window widths.
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variables is because increasing the window width increases
the amount of information we get on the background much
faster than the other variables. The simpler case outlined in
equation (17) illustrates this; the ratios of summands in the
definition of equation (17) are

summand I22ð Þ=summand I11ð Þ ¼ g2
i

and

summand I12ð Þ=summand I11ð Þ ¼ gi:

Having assumed above that the line is centered in the window,
increasing Nd steps farther from the emission peak, where there
are fewer photons due to the line and more due to background.
In this situation, I11 increases linearly with Nd , whereas the
other quantities in the matrix will tend to constants. On inver-
sion, the Cramér-Rao lower bound for the background decreases
linearly with Nd , whereas the others decrease much more slowly
and are effectively constant.

An analysis of experimental precision as a function of win-
dow width allows one to design studies so that the window is
not overly large, which (depending on the instrument) could save
on processor time, onboard storage, and telemetry. The purpose
of the observation and the instrument design must all be taken
into account when optimizing a particular observation.

3.3. Location of the Line in the Spectral Window

The information content of the emission spectrum is also
changed by the location of the line in the spectral window. CDS
studies attempt to put the emission line of interest at the center
of the window and so obtain the largest number of photons as-
sociated with the emission line. The Cramér-Rao formalism can
be used to calculate precisions as a function of line location in
the window, whether due to Doppler shift or deliberately not
having the line centered in the window (moving the line center
is equivalent to moving the window location).

An illustrative case of the influence of line position in the
window is shown in Figure 2. It is assumed that both the line
position and line width are known, leaving only the emission-

line amplitude and background emission unknown, that is, equa-
tions (18) and (19) as a function of line center c. Precisions in
background get better as the line moves away from the center (as
expected), since the window contains more and more background
than emission line. Precisions in amplitude are best at c ¼ �3:52
(~2% better) and not at c ¼ 0, where the line is centered in the
window. Intuitively, one would expect that the precision for
Gaussian amplitude would get worse as the line moves out of the
window. However, in the system as a whole, while it is true that
the amount of information about the Gaussian amplitude de-
creases as the line moves out of the window, it is also true that the
amount of information about the background emission increases.
There comes a point when the decrease in amplitude information
is more than compensated by the increase in information from the
background; the final interdependence of this information is ex-
pressed in the Cramér-Rao lower bound through the inversion
of the information matrix (the dependence as a function of line
center of the different elements I11, I12, I22 of the information
matrix I are shown in Fig. 2). The interplay of information also
occurs in more complicated situations: Figure 3 compares the
Cramér-Rao lower bound and variances derived via simulation for
a Fe xvi line moving across the spectral window when all four
variables in the simulation (three Gaussian variables and a con-
stant background) are unknown.

When Fe xvi k360.76 is observed on the Sun, the Doppler
velocities measured rarely exceed �150 km s�1, or ~�1.5 line
widths, implying that the spectrometer setup of x 2.2 will not
experience gross changes in Cramér-Rao lower bound in typi-
cal observing circumstances. However, this need not always be
the case. Reducing the number of pixels across the line to Nd ¼
9 (Fig. 3) shows the effect of having less information. Cramér-
Rao lower bounds for the constant background, line width,
and position are more strongly affected in the region �1:5�
c� 1:5 line widths. The structure seen in the Cramér-Rao lower
bounds reflects the interplay of different amounts of informa-
tion on each variable affecting the final bound. Such a study
demonstrates that not only the amount of information but where
that information comes from with respect to the emission fea-
ture being measured and the spectral window used can affect
precisions.

Fig. 2.—Normalized Cramér-Rao lower bound for Gaussian amplitude A
(solid line) and background � (dashed line) as a function of line position in a
spectral window of fixed size. The plot symbols (amplitude, plus signs; back-
ground, triangles) show variances derived from 218 spectrum fits at each line
position (normalized to values at c ¼ 0). Bold lines show arbitrarily normalized
information matrix elements (eq. [17]: I11 , associated with background emis-
sion; I22 , associated with the Gaussian amplitude; and I12 , a background and
amplitude cross term). The vertical dotted lines denote the positions of minima
in the Cramér-Rao lower bound for Gaussian amplitude.

Fig. 3.—Normalized Cramér-Rao lower bounds for three Gaussian variables
(amplitude, solid line; position, dashed line; width, dot-dashed line) and a
constant background (triple-dot–dashed line) for window sizes of 18 and 9
pixels (bold lines). Plot symbols (Gaussian amplitude, plus signs; line position,
asterisks; Gaussian width, diamonds; constant background, triangles) show
normalized variances derived from 218 spectrum fits at each line position. All
data are normalized to Cramér-Rao lower bound values at c ¼ 0.
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3.4. Damagged Detector Pixel

Figure 4 demonstrates the effect on precisions of having a
single damaged pixel (say, due to cosmic ray or charged particle
hits) in an observation of the Fe xvi line (x 2.2) as a function of
the position of the damaged pixel. The damaged pixel is as-
sumed to contribute no information to the information matrix I.
The resulting Cramér-Rao lower bounds are all larger relative to
the full information case, as expected. The degree to which each
quantity is affected depends on the location of the damaged
pixel; for example, the experiment becomes much less precise
in measuring the Gaussian amplitude when the damaged pixel
is within one line width of the emission center than when the
damaged pixel lies greater than two line widths away from the
line center. The converse is true for the background, reflecting
the relative importance of these locations to each variable ex-
pressed, as through the inverse of the information matrix. Such
a study may be useful in redesigning experiments to optimize
goals when confronted with a damaged spectrometer. For ex-
ample, consider a spectrometer experiment in which the pix-
els close to line center are damaged. If photon counting is a
primary goal and is judged to be more important than deriving
Doppler velocities, a combination of the studies outlined here
and in x 3.3 could be used to judge how best to reimage the line
to obtain better precision in Gaussian amplitude.

3.5. Influence of Line-to-Continuum Ratio

A simple way to increase the number of photons per pixel is
to increase the exposure time used. Let � � 1 be the ratio of the
new (longer) exposure time to the previous exposure time. The
number of photons collected can be modeled as �Fi (V ), which
implies var (t) � I�1

� �
k k
=� (eq. [11]). The Cramér-Rao lower

bounds in all variables vary as 1/� , or inversely with exposure
time, implying that precision increases linearly with exposure
time.

Consider instead an experiment in which the background
number of counts stays the same but the number of counts in the
emission line changes. This could occur, for example, if a change
in the experiment design changes its stray light characteristics.
Such an effect can be modeled through �A/�, for � � 0. This
varies the line-to-continuum ratio and its effect is shown in

Figure 5. Plotted here are normalized deviations, calculated via
the square root of the variance, divided by the variable value (ex-
cept Gaussian position).
The behavior of the normalized deviations can be understood

through looking at the Cramér-Rao information matrix compo-
nents. For the Gaussian amplitude, the leading term is I11. As
� ! 1, I11/�, and so the normalized deviation varies as ��1/2.
The leading term for the Gaussian position in the information
matrix can be found by considering equation (10) for Vp ¼ c,
that is,

I33 ¼
XNd

i¼1

� 2A2

�þ �Agi

(x� c)2

�4
g2
i ;

which varies as � as � ! 1. On inverting the information
matrix, the Cramér-Rao lower bound leads to a normalized de-
viation that varies as ��1/2. Similarly, for the Gaussian width,

I44 ¼
XNd

i¼1

�2A2

�þ �Agi

(x� c)4

�6
g2
i

has the same behavior as I33 and so the normalized deviation
varies as ��1/2 when � ! 1. Increasing the number of counts
in the Gaussian compared to a constant background, all three
Gaussian variables improve equally fast for a large enough line-
to-continuum ratio. As expected, the normalized deviation in
the background gets worse with increasing � tending to �1=2 in
the large � limit. The �-dependence in the parameter range
shown is weak, since the leading term in the information matrix
for the background (I11) contains no large 1=g2

i factors, unlike
I22 , I33 , and I44 .

3.6. Comparison of Line-FittinggRoutines

The existence of a calculable limit to the precision an ex-
periment can reach defines an independent standard against
which line-fitting routines can be measured. Table 1 shows the
results of such a comparison for six line-fitting routines avail-
able in the SolarSoft1 library. A total of 220 spectra were fitted

Fig. 4.—Normalized Cramér-Rao lower bounds (Gaussian amplitude, solid
line; line position, dashed line; Gaussian width, dot-dashed line; constant
background, triple-dot–dashed line) as a function of the damaged pixel po-
sition. Plot symbols (Gaussian amplitude, plus signs; line position, asterisks;
Gaussian width, diamonds; constant background, triangles) show variances
derived from 218 spectrum fits at each line position. All data are normalized to
Cramér-Rao lower bound values calculated when all 18 pixels are included in
the calculation.

Fig. 5.—Normalized deviation lower bounds of each variable (Gaussian am-
plitude A, solid line; Gaussian position c, dashed line; Gaussian width �, dot-
dashed line, and background �, triple-dot–dashed line) as a function of � (see
x 3.5). The plot symbols (Gaussian amplitude, plus signs; line position, aster-
isks; Gaussian width, diamonds; constant background, triangles) show devia-
tions derived from 210 spectrum fits at sample values of �. These data are
normalized to the deviation values at � ¼ 1 and the variable values. Also shown
(dotted line) is the line ��1=2.

1 Available at http://www.lmsal.com/solarsoft.
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using each of the routines with the appropriate initialization
(each spectrum was generated from the emission line of x 2.2
subject to Poisson statistics). Five of six routines have very
similar performances, with the AMOEBA routine being notice-
ably worse than the others. The results show that the seeding of
AMOEBA is critical to its performance; starting with a routine-
generated initial guess is considerably worse than starting with
the true parameters. This implies that if your initial guess is not
close to the true values, then for each simulated emission line
AMOEBA is much more likely to yield an answer more distant
from the mean value than other routines. The other routines have
broadly similar performances when compared to the Cramér-Rao
limit. Note that there is a small, but present, effect on experimen-
tal precisions depending on whether these routines are seeded
with either true noise/parameters compared to estimated noise/
parameters. Initializing with estimated noise/parameters mimics
a realistic situation faced by most users of these routines, and this
study shows that experimental precision is not grossly affected
by the use of good estimates.

3.7. Optimizinggfor Total Intensity

Observers are often interested in the total number of photons
present in an emission line. This can be important for emission
measure analysis, line diagnostics, and inversions to generate
estimates of useful plasma parameters such as plasma temper-
ature, density, and filling factor. The Cramér-Rao framework can
be used to find under what conditions the measurement of inte-
grated intensity is optimal.

Integrating across the line from �1 to1, the total intensity
is

IT ¼
ffiffiffiffiffiffi
2	

p
A�; ð20Þ

where A and � are the Gaussian amplitude and width, re-
spectively. The actual number of photons measured is 
T ¼PNd

j¼1 Dj . If A, c, and � are estimates for a Gaussian emission
line (amplitude, position, and width, respectively), then the es-
timated total intensity is I ¼ A

PNd

j¼1 gj for gj ¼ exp ½�(xj�
c )2=(2�2)�. If the line is well fitted and the estimated line width
is a fraction of the spectral window width, then IT , 
T , and I are
all approximately equal. If A is drawn from a distribution with

standard deviation �A and � is drawn from a distribution with
standard deviation ��, then the standard deviation in IT , �IT , is

�IT
IT

� �2

¼ �A

A

� �2

þ ��

�

� �2

: ð21Þ

An estimate of this quantity can be found by using the estimated
Gaussian values and their estimated standard deviations.

Consider an experimental design that has a constant through-
put of photons and is set up in such a way that the line width pre-
sented to the detector can be changed. If line width is small, only
a few pixels are illuminated and the signal-to-noise ratio at those
pixels is small. However, since only a few pixels are illuminated,
the line width is not well determined. Conversely, when increas-
ing the line width presented to the detector, the information about
the line width gets better; however, the signal-to-noise ratio per
pixel is correspondingly worse. Consequently, there should exist
some intermediate line width that minimizes the standard devia-
tion in the integrated intensity, making themeasurement as precise
as possible. Consider two lines that have the same integrated in-
tensity; from equation (20),

A2=A1 ¼ �1=�2: ð22Þ

If line 1 is fixed then this equation describes a relationship be-
tween the Gaussian amplitude and width for a line having the
same integrated intensity. A Cramér-Rao lower bound calcu-
lation is performed on a set of emission lines that satisfy this
relationship, generating values for (�A)2 and (��)2 that can be
used to calculate a minimal value to (�IT /IT)

2. The Gaussian line 1
parameters are taken from the line parameters described in x 2.2.
The Cramér-Rao lower bound calculation also includes a constant
background; the calculation is repeated 3 times using a constant
background emission 0.1, 1.0, and 10 times the value given for the
emission line in x 2.2. The results are shown in Figure 6.

The Cramér-Rao lower bound calculation predicts optimal
line widths minimizing the relative integrated intensity standard
deviation for the observed line (for all three values to the back-
ground emission). The existence of minima is also confirmed by
simulation. Changing the background value changes the behav-
ior of (�IT /IT)

2, since information on the emission line depends
on the entire system, including the background.When the back-
ground emission is fixed at the value given in x 2.2, it can be

TABLE 1

Dependence on Fitting Routine

Routine Initialization A k � � Average �2

CURVEFIT .................... True noisea 1.00 1.00 1.00 1.00 1.00

Estimated noiseb 1.00 1.00 1.01 1.02 1.01

CDS_GAUSS ................ True parametersc 1.07 1.25 1.45 1.20 1.07

Estimated parametersd 1.07 1.25 1.45 1.19 1.07

MPCURVEFIT............... True noisea 1.00 1.00 1.00 1.00 1.00

Estimated noiseb 1.00 1.01 1.01 1.02 1.01

GAUSSFIT..................... True parametersc 1.07 1.25 1.45 1.20 1.07

Estimated parametersd 1.07 1.25 1.45 1.19 1.07

AMOEBA ...................... True parametersc 1.31 1.91 2.57 13.0 2.43

Estimated parametersd 1.78 2.26 6.93 21.1 3.56

POWELL ....................... True parametersc 1.07 1.25 1.45 1.20 1.26

Note.—Dependence on fitting routine of average �2 and the variances in the fit parameters (normalized
to the Cramér-Rao lower bound).

a The fit is weighted using the true emission profile.
b The spectrum to be fit is used as a weight.
c The true values of the emission profile parameters are used to seed the routine.
d The routine generates its own estimates of the emission-line parameters to seed the routine.
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seen that the minimum of the (�IT /IT)
2 is not at �1=�2 ¼ 1, that

is, the line width presented to our model detector is not opti-
mized for measuring integrated intensity. Rather, the minimum
occurs at �1=�2 ¼ 2:26. The value of (�IT /IT)

2 at �1=�2 ¼ 1
is ~1.2 the value at the minimum. Therefore, changing the
line width presented to the detector to �1/2.26 would improve
(�IT /IT)

2 by 20%. The Cramér-Rao framework allows the ex-
periment designer to explore different theoretical configurations;
the question as to whether the extra effort required to optimize
such an observation can be informed by studies such as those
presented above but must be answered by the designer. Finally,
it is interesting to note that the CDS-inspired Fe emission-line /
detector model observations appear to exist in a portion of pa-
rameter space that is a reasonable compromise between knowl-
edge of line amplitude, position, and width (see Fig. 1), and
integrated intensity.

4. CONCLUSION

The aim of this paper is to show that a Cramér-Rao frame-
work is a convenient way to pose questions about the precision
of spectrometer experiments and line fitting. The models cho-
sen are relatively simple and are intended to be illustrative of the
power and flexibility of this approach. The application of the
Cramér-Rao lower bound to models of solar emission spectra
shows that it is possible to characterize the precision capabili-
ties of spectrometers in a variety of circumstances. The pre-
dictions are borne out by simulation in all the examples above.

In all the simulations described in x 3, CURVEFIT, a least-
squares–based routine, was used to fit the simulated data. The
variances calculated via simulation follow the Cramér-Rao
lower bound very well, indicating that CURVEFIT is perform-
ing close to the limit for these problems. Why should this be?
The Cramér-Rao lower bound arises from considering the max-
imum likelihood solution to equation (1), where the fi ’s are
Poisson distributions for the emission-line statistics considered
here (x 2.2). However, since the mean values to these distribu-

tions are large, the Poisson distributions can be approximated
by normal distributions of the form

�i ¼
1

wi

ffiffiffiffiffiffi
2	

p exp � Di � Fi(V )½ �2

2w2
i

( )

for some wi (either the true emission or the measured emission
depending on the initialization of CURVEFIT). So, L � �Nd

i¼1�i

and log L becomes a search for Ṽ such that

XNd

i¼1

Di � Fi(Ṽ )
� �2

2w2
i

þ
XNd

i¼1

log wi

ffiffiffiffiffiffi
2	

p
 �

is minimized. Since the right-hand term is constant with respect
to the fit parameters, the expression above is a formulation of a
weighted least-squares approach. Therefore, in the limit of large
Poisson means and assuming a well-designed least-squares–
based algorithm, the least-squares and maximum likelihood so-
lutions approximate each other. Hence, condition (7) is approx-
imately satisfied and so the least-squares algorithm performs
close to the (Poisson based) Cramér-Rao limit.
There are a number of extensions that can be made to the

basic models outlined here that will more accurately reflect a
true spectrometric measurement. Real spectrometers have point-
spread functions so that photons that should arrive at a given posi-
tion on the detector actually appear on other, often neighboring
pixels. This would have the effect of smearing out a Gaussian line
and also changing the distribution function (or noise) at each de-
tector pixel. The distribution function at each pixel would be the
weighted sum of Poisson distributions, which, in general, is not a
Poisson distribution (the overall probability distribution function
[eq. (1)] would be a product of these weighted sums.) This effect
should increase the Cramér-Rao lower bounds achievable. In ad-
dition, the noise distribution at each pixel is unlikely to just have
purely Poissonian sources: other sources exist (pixel readout noise,
for instance) and should also be taken into accountwhen construct-
ing Cramér-Rao models of spectrometers. For instance the noise
response of CDS is known to be not purely Poissonian; as a first
approximation, measurements in CDS appear to be drawn from
Poisson distributions that have twice the mean one would expect.
Clearly, this will influence achievable precisions.
The type of emission model will also influence achievable

precisions. Many spectra have backgrounds that vary across
the measured spectrum, breaking the symmetry of many of
the results presented in this paper. Emission lines need not be
Gaussian either. On 1998 June 25, the SOHO spacecraft was
lost; on recovery and testing of CDS it was found that the
emission profiles had changed significantly and are empirically
described by B(k)¼ A (1�
 )G(k)þ 
W (k)½ �, where G(k)¼
exp½(k� C ) 2=2�2�, W (k) ¼ 1=f1þ ½(k � C )=�0 �2g, and � 0 ¼
2� 2 ln 2ð Þ1=2. The parameter 
 is allowed to have different val-
ues on the red and blue sides of the line, introducing asymmetry
to the line. This gives a total of five parameters, three for cen-
tral Gaussian and one for each wing. Tests on post-recovery
data (Thompson 1999, 2000) show that good fits are possi-
ble with asymmetric fits using the profile above. However, with
more degrees of freedom noisy data can be fitted in many more
ways and so it is expected that the precision with which the line
parameters can be ascertained will worsen. Also, some spectra
contain more than one emission line and often the two lines
overlap, causing an apparent asymmetry in the line of interest
(Taniguchi 1987; Smith & Shetrone 2000). Fitting both lines

Fig. 6.—Square of the relative error in integrated intensity as a function of
relative line width for three different values of constant background emission
(0.1, 1, and 10 times the Fe background emission � in x 2.2, dotted, solid, and
dashed lines, respectively, are the values predicted by the Cramér-Rao lower
bound analysis). The original emission line (subscript 1) used is the Fe line in
x 2.2; line 2 varies the line width and Gaussian amplitude so as to keep the
integrated intensity constant for all values of �1/�2. The vertical lines indicate
the positions of the minimum relative standard deviation. Also shown as plot
symbols (Gaussian amplitude, plus signs; line position, asterisks; Gaussian
width, diamonds; constant background, triangles) are the simulation-derived
values of (�IT /IT)

2 found by fitting 1024 Poisson-noisy emission profiles,
calculating estimates of (�A)2 and (��)2 for insertion into eq. (21).
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increases the number of degrees of freedom of the fit and again
we can expect precisions to worsen. These effects, which speak
to more sophisticated and commonly occurring features of real
spectrometers, will be studied in future papers.

The Cramér-Rao lower bound has shown itself to be useful in
answering a variety of different questions about the knowledge
achievable in spectrometric measurements. Further refinements
in the description of model spectrometers that more accurately
reflect the behavior of real spectrometers will lead to a better

understanding of the interplay of effects present in real spec-
trometric measurements.
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