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Abstract. We discuss the analysis of real and simulated
line spectra using a genetic forward modelling technique.
We show that this Genetic Algorithm (GA) based tech-
nique experiences none of the user bias or systematic prob-
lems that arise when faced with poorly sampled or noisy
data. An important feature of this technique is the ease
with which rigid a priori constraints can be applied to
the data. These constraints make the GA decomposition
much more accurate and stable, especially at the limit
of instrumental resolution, than decomposition algorithms
commonly in use.
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1. Introduction

The recent launch of the SOlar and Heliospheric
Observatory (SOHO) satellite, has renewed interest in
the classification (Seely et al. 1997; Laming et al. 1997)
and interpretation (Brekke et al. 1997; Judge et al.
1997) of high spectral resolution ultraviolet (UV) and
extreme ultraviolet (EUV) emission spectra. The ma-
jority of these spectra come from the Solar Ultraviolet
Measurement of Emitted Radiation (SUMER), and
Coronal Diagnostic Spectrometer (CDS) instruments on-
board SOHO (Wilhelm et al. 1995; Harrison et al. 1995).

A first step in the analysis of emission line spectra
is to identify and measure properties of lines believed to
be present. This is usually achieved by associating (sub-
jectively) the observed spectral profiles with ionic and
atomic transitions of “known” laboratory wavelengths.
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From these possibly biased decompositions, physical mod-
els of the underlying plasma are sought. In an effort
to obtain the best possible scientific results from their
spectra, the CDS and SUMER teams have set about
ways to produce the most “reliable” decomposition; see
Brynildsen (1994) for more details.

Standard spectral decomposition techniques unfortu-
nately prove to be unstable when presented with data
of low signal to noise ratio, or data that is poorly sam-
pled. In particular these instabilities cause subtle differ-
ences in the decomposition of each spectrum and can lead
to significantly different physical interpretations. This has
prompted us to search for a method that can provide spec-
troscopists with reliable decompositions of observed spec-
tra that are as free as possible from subjective bias.

We use a heuristic approach to decomposition. We use
a Genetic Algortihm (GA) to fit model line profiles, which
for our purpose we chose to have Gaussian form, to provide
a simple parameterisation of the spectrum under analysis.
This approach exploits the stability and optimization ca-
pabilities of natural selection (Darwin 1859). Sections 2.1
and 2.2 describe the basic GA formalism, and an intro-
duction to our Gaussian fitting GA, hereafter Ga-GA.

The GA technique is applied under ideal conditions
(to “simple” noiseless test spectra) in Sect. 3.1. This first
test also helps to highlight how well genetic operators are
suited to this task. Section 3.2 gives a much more stringent
test of the how a GA performs when fitting spectra con-
taining unstructured random noise. Here, the GA’s sta-
bility in the presence of random Gaussian noise is com-
pared to that of standard profile fitting and optimiza-
tion algorithms. We show that these standard algorithms
are blighted by possible user bias which is not present
with the GA technique. To aid further comparison of our
GA technique to standard analysis algorithms we have
constructed model spectra with realistic noise and con-
tinuum/background levels. The results are discussed in
Sect. 3.3.
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The ability of the GA approach is given a final test in
Sect. 4 on quiet Sun SUMER spectra. There we compare
our results with those obtained from an analytical decom-
position performed by Judge et al. (1997). We note that
their technique used additional information not available
to the GA.

Although much emphasis must be placed on the fact a
GA requires minimal user input, in certain circumstances
user input can prove useful, such as cases where relative
wavelengths and intensities are well known from atomic
physics. Such additional constraints can (almost trivially)
be “hard-wired” into the algorithm. Section 4.1 highlights
the possibilities of applying rigid a priori constraints to
the observed spectrum.

2. Motivation and method

Prior to the launch of SOHO, a study was undertaken
(Brynildsen 1994) to identify the “best” profile fitting
package for the CDS and SUMER instruments. The study
compared various algorithms for fitting Gaussian profiles,
or combinations thereof.

The common denominator linking all of the profile
fitting algorithms studied by Brynildsen (CURVEFIT -
from the Interactive Data Language (IDL) userlib, and
AMOEBA - A “downhill” SIMPLEX algorithm from
Press et al. 1992, and others) is the need for user input
regarding starting points for each parameter in the search.
This potential source of user bias, and the reduced qual-
ity (in terms of fit to the data) of the parameterisation
form the principal motivation for this paper, and indeed
we show that they are not present using a GA technique
beyond the absolute minimum requirement of supplying a
“line list” of lines to be identified.

Using a GA for this profile fitting problem can have
many advantages not available to the user of predictive
line fitting algorithms. Considering one of the many ad-
vantages noted in Charbonneau (1995), a GA is not de-
stabilised by noise in the data; it will merely attempt to
achieve its goal, locating the “best” profile. The GA will
attain this goal, the introduction of data noise will merely
affect the convergence time of the algorithm.

We present a “simple” GA, called Ga-GA, which we
show to be stable against reasonable noise levels and to
have no source of possible user bias. The following sections
discuss its performance in detail.

2.1. Overview of a simple Genetic Algorithm

Genetic Algorithms are inspired by the mechanism of nat-
ural selection and basic genetic operators, occuring natu-
rally in biological systems, see Holland (1962). Consider a
typical numerical optimization task, where a parametric
model is to be fit to data in a manner that maximises the

closeness of fit, or fitness (as measured, for example, by a
χ2 statistical estimator). A genetic algorithm is an itera-
tive scheme that operates on a population of trial solutions
to the problem in the following way:

1. Construct an initial population using random values
for the model parameters, and evaluate their fitness.

2. Select a subset of the fitter individuals, and breed them
to produce a new population.

3. Evaluate the fitness of each individual in the new pop-
ulation.

4. Replace the old population with the new one.
5. Check whether the fitness has reached some pre-

defined tolerance, or the number of iterations (or gen-
erations) has reached its maximum; if not return to
step 2.

GAs carry out a form of forward modelling, by per-
forming a heuristic search of the problem’s parameter
space. What distinguishes a GA from other forward mod-
elling methods (such as Monte Carlo simulation) is pri-
marily the way in which new trial solutions are con-
structed from the current population of trial solutions (cf.
step 2 above).

At the most basic level a GA can be viewed as a proces-
sor of a set of strings, each encoding a particular version
of the model being optimised. A subset of the fitter indi-
viduals of the current population are selected and paired,
and the defining strings of each such pair are subjected
to the action of two genetic operators: cross-over and mu-
tation. The cross-over operation involves dissection of the
two parent strings at a randomly chosen point along the
string, followed by the interchange of the dissected compo-
nents. In this way two new strings are produced from two
parent strings (see Fig. 1). The second operator, muta-
tion, involves the replacement of a few randomly selected
digit in the two strings produced by the cross-over oper-
ation with randomly generated digit values. Its primary
purpose is to maintain a suitable level of variation in the
population, which is essential for selection to operate. The
combination of stochastic genetic operators with fitness-
based selection yields a powerful search algorithm that can
move away from secondary extrema and locate the global
extremum in parameter space (see, e.g., Goldberg 1989;
Davis 1991; Charbonneau 1995)

In this paper we are using a GA version which imple-
ments a scheme involving a variable mutation rate, i.e. as
the population becomes more degenerate (little variation)
the probability of a mutation taking place is correspond-
ingly increased, and makes use of elitism, the best individ-
ual in the old generation is not replaced unless there is a
fitter one in the new generation. The selection of individu-
als in the breeding operator is carried out using a roulette-
wheel algorithm (see Davis 1991, Ch. 1), meaning that in-
dividuals with higher fitness are associated with sectors
of correspondingly large angle on the roulette wheel. This
roulette wheel, when “spun”, ensures that although all
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Fig. 1. A pictorial explanation of the main GA breeding oper-
ator, cross-over

individuals are capable of breeding, the fitter individuals
have a slightly higher probability of being selected.

In many ways our GA resembles that of
Charbonneau (1995), but it also contains some fea-
tures of the GA presented in Diver & Ireland (1997).
Indeed, in the cases presented in Sect. 4 we have em-
ployed a variation on the algorithm PIKAIA presented in
Charbonneau (1995) to maximise speed and accuracy.

2.2. Fitness evaluation

Isolation of particular features (e.g. line width and ab-
solute intensity) in an emission line spectrum made up
of N lines is a procedure used by many standard fitting
algorithms, with many using line identification as their
primary “search” (cf. the user input given to the algo-
rithms mentioned above). On aquiring the line position
they sequentially alter the amplitude or the 1

e width of
the Gaussian profile(s) to achieve the “best” fit to the tar-
get. However, since the observed emission line spectra can
and do, contain a large number of profiles, it is possible to
adopt a method which solves for all lines simultaneously
(see e.g., Diver 1995; Diver & Ireland 1997).

When Ga-GA “recognises” spectral features, i.e. one of
the Gaussian describing parameters or an entire profile,
the corresponding final solution will be a better represen-
tation of the target and will result in that string of param-
eters being given a higher fitness. Since Ga-GA uses the
mechanics of natural selection, a genotype with a higher
fitness value will be prevalent in the current and future
generations until replaced by a “fitter” individual.

Ga-GA uses parameter strings of length 3 × N , where
N is the estimated number of Gaussian profiles in the line
spectrum to be analysed, and three because it requires
three parameters to describe a general Gaussian profile.
These parameters are absolute position in wavelength, at
channel (X), amplitude (A), and the Gaussian’s 1

e
value

(W ) and are encoded as a string in the following order:

[X1, A1,W1, . . . . . . ,XN , AN ,WN ] .

A string of the form above defines a sequence of N
Gaussian profiles that defines a synthetic spectrum, this

computed profile is an individual’s phenotype. It is this
phenotype profile that is retained for comparison to the
observed spectrum. Phenotype profiles are calculated us-
ing the standard pointwise Gaussian formula, i.e. for a
particular channel x, usually associated with wavelength,
in Gaussian i (Gi):

Gi(x) = Ai exp

(
− (x − Xi)

2

W 2
i

)
. (1)

The N Gaussian profiles derived from a particular geno-
type string are summed to form the “unique” phenotypic
profile for genotype j, P (x)j (with x meaning for all chan-
nels x). P (x)j is given by:

P (x)j =
N∑
i=1

Gi(x) ∀x. (2)

Only once P (x)j has been computed do we calculate an
error measure between it and the target. The error mea-
sure of a particular genotype (E(x)j) depends on several
factors; the square pointwise difference of the target and
the corresponding phenotype (C(x), and P (x)j), the num-
ber of parameters in the calculation (3×N), the number
of points summed over (Ndata) and an estimate of the
noise level in the data (σdata(x)). Thus, E(x)j (effectively
a normalised χ2 measure) is given by:

E(x)j =
1

(Ndata − 3N)

∑
x

(
(C(x)− P (x)j)

σdata(x)

)2

(3)

with E(x)j ∼ 1 indicating a “good” fit.
This measure is used to evaluate the fitness of each

genotype. It is the fitness value that is used to rank all
the genotypes in a particular population into ascending
order and to “weight” the roulette wheel of Sect. 2.1.

3. Results

This section details the results of Ga-GA applied to sim-
ulated target data sets which have a known level of noise
added. Section 3.1 discusses the performance of Ga-GA in
the absence of data noise (except for very small numer-
ical rounding errors). Sections 3.2 and 3.3 provide ideal
circumstances to test the performance of Ga-GA, against
that of the two standard algorithms mentioned earlier;
CURVEFIT and AMOEBA, for data with a realistic noise
level and with a noisy background present (Sects. 3.2 and
3.3 respectively). Section 3.3 will also show the ease with
which additional spectral features may be incorporated
into the analysis.

3.1. Application to noiseless target spectra

We use Ga-GA to analyse three noiseless targets, i.e.
we replace σdata(x) by 1 in Eq. (3), each correspond-
ing to a different Gaussian configuration. The three test
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Fig. 2. Test run for Ga-GA, taken from the ensemble of ten runs,
for the noiseless single Gaussian target (solid line) of Case 1
and the profile modelled by Ga-GA (4)

targets are: 1) A single “wide” Gaussian with the tar-
get genotype given by three parameters, [X AW ] =
[ 50 100 20 ]. 2) Two “joined” Gaussians correspond-
ing to the six parameter genotype [ 40 100 20 80 90 15 ],
and 3) a more complex five Gaussian configuration
with the fifteen parameter target genotype given by
[ 10 30 5 22 60 1 26 40 3 43 70 5 55 60 5 ].

Each case was analysed ten times (to allow perfor-
mance statistics to be compiled), each run with a different
initial population, for a fixed number of generations. It is
also possible to configure Ga-GA to run until it achieves
a fixed E(x) although for certain types of analysis this
method is unfavourable (Charbonneau & Knapp 1996).
The number of generations used in each case is different
however, and varies with the increase in complexity of
the target solution. Therefore target 3 typically requires a
1200 generation run, which is considerably more than the
200 and 500 generation runs required for targets 1 and 2
respectively.

The returned parametrisation of each target is given in
Table 1. The subscript T quantities (e.g. XT ) are the tar-
get parameters and the subscript G quantities (e.g. XG)
are the corresponding mean values returned by Ga-GA af-
ter multiple fixed generation runs. It is clear from the re-
sults presented in Table 1 that Ga-GA obtains a very good
representation of each target (within the errors). The er-
rors in the parameters are global error estimates and are
calculated in a Monte Carlo fashion, i.e. we perform multi-
ple runs of Ga-GA each with a different initial population,
this is achieved by initializing the random number gener-
ator with a different seed (Charbonneau & Knapp 1996).
This Monte Carlo approach “forces” Ga-GA to search the
parameter space from a different starting point each time.
This will also allow the calculation of “mean” values for
each of the parameters.
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Fig. 3. Test run for Ga-GA, taken from the ensemble of ten runs,
for the noiseless double Gaussian target (solid line) of Case 2
and the profile modelled by Ga-GA (4)
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Fig. 4. Test run for Ga-GA, taken from the ensemble of ten runs,
for the noiseless five Gaussian target (solid line) of Case 3 and
the profile modelled by Ga-GA (4)

Figure 2 shows a plot of target 1 (solid line) and the
profile derived from the “fittest” genotype (4) after only
200 generations with the E(x) = 2.476 10−4. Similarly,
Fig. 3 shows the profile constructed from the fittest geno-
type, E(x) = 3.296 10−3, for the double Gaussian config-
uration of target 2. Figure 4 demonstrates Ga-GA’s han-
dling of the more complex case 3, resulting in E(x) =
1.984 10−4 of the fittest genotype after 1200 generations.
For these test cases final values of E(x), if we doubled
the number of generations, will be limited by numerical
precision and would possibly attain no better values than
those given and it must be emphasised that these results
are for one particular run of Ga-GA from the ensemble of
10 runs.

We show, in Fig. 5, the decrease in E(x) with genera-
tion number for the full ensemble of runs (indicating the
mean E(x) (solid line), extrema (dashed line) and median
(dotted line) for each generation step) for each of the test
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Fig. 5. Convergence of E(x) against generation number for
each of the three cases in Sect. 3.1. Top panel: Case 1 (sin-
gle Gaussian), Middle panel: Case 2 (two Gaussians) and
Bottom panel: Case 3 (five Gaussians). For each generation
step the mean E(x) (solid line), median (dotted line) and ex-
trema (dashed lines), for the ten run ensemble, are indicated.
It is clear that, when a relatively “poor” parameterisation is
present, the difference between the median and mean of E(x)
is demonstratably effected, this effect is evident in the top and
bottom panels

cases above. These plots demonstrate the power of Genetic
Algorithms as optimization tools. The steplike structure is
clearly visible in all three plots, although to a much greater
extent in the uppermost plot. Such steps occur when Ga-
GA suddenly obtains a new “fitter” value for one (or more)
parameter(s), the long flat “plateaus” are points where the
current “best” in the population hasn’t changed or when
the population is largely degenerate, i.e. all the individ-
uals have very similar genotypes. These mutation jumps
will occur because the mutation rate has been allowed to
increase, and will thus introduce new genetic material at
a higher frequency.

Figure 5 also justifies our earlier claim that more com-
plex targets (more parameters) require a greater number
generations in the run. As with any optimization method
the plots show how the gradient of E(x) lessens with the
increase in the number of parameters in the genotype,
the increase in the number of generations required for a
GA to evolve an acceptable solution increases with the di-
mension, D, of the search space; typically it does so in a
manner that is highly problem dependent, but often ends

0 10 20 30 40 50 60 70
Channel Number (x)

0

20

40

60

80

100

120

140

A
m

pl
itu

de
 (

A
)

Parameters: [ 10 30 5 22 60 1 26 40 3 43 70 3 55 60 5 ]

Candidate Error: 15 %

Model Configuration
Ga−GA Model

CURVEFIT Model
AMOEBA Model

Fig. 6. Performance comparison plot between Ga-GA,
AMOEBA and CURVEFIT. They are compared using
the target of Sect. 3.2 with 15% added random noise. See also
Table 2

up as being a low (order unity) power of N . So such con-
vergence plots provide evidence to suggest that we have
not yet evolved a “perfect” match for the target. This may
be estimated by looking at the gradient of the plot at the
end of its evolutionary run. The center and bottom plots
in Fig. 5 show that the evolutionary process may not be
finished.

3.2. Application to a “noisy” target spectrum

Reliable analysis of a “noisy” target must be the bench-
mark for any spectral decomposition technique. We there-
fore compare the performance of Ga-GA to that of the
AMOEBA and CURVEFIT algorithms in decomposing a
“noisy” five Gaussian target, again with Ga-GA results
the mean of ten runs. The target is generated by the
same fifteen parameter genotype as case 3 of Sect. 3.1
([ 10 30 5 22 60 1 26 40 3 43 70 3 55 60 5 ]) to which we now
add 15% “random” noise. The noise is set to be normally
distributed about the data with an rms amplitude of 15%,
so σdata(x) = 0.15C(x) in Eq. (3).

The results of the calculations for each algorithm1 are
shown in Table 2 where Ga-GA achieves the lowest E(x)
(1.889), by a factor of six from CURVEFIT (12.961) and
by a factor of about ten from AMOEBA (18.626). It must
be noted that all produce “good” parameterisations of the
spectrum given the severe noise present, but bear in mind
that the latter two algorithms are practically given the
target parameters as a startpoint, and are hence heav-
ily influenced by the user. This is definitely not the case
with Ga-GA. CURVEFIT and AMOEBA also exhibit an-
other behavioural pattern not observed with Ga-GA; they

1 It should be noted that CURVEFIT and AMOEBA were
initialised with a guess of each parameter that is within ±2 the
target parameter value.
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Table 1. Results for cases 1), 2) and 3) described above. Subscript T quantities indicate target parameters, and subscript G
quantities are the mean after multiple evolutionary runs. Similarly, the values of 〈E(x)〉 are the final mean values of E(x). The
errors for each parameter are calculated as the means of the ten run ensemble

XT AT WT XG ± δXG AG ± δAG WG ± δWG

Case 1. 〈E(x)〉 5.226 10−4 200 gens.
50.00 100.0 20.00 50.000 ± 0.000 100.002 ± 0.003 20.002 ± 0.001

Case 2. 〈E(x)〉 3.779 10−3 500 gens.
40.00 100.0 20.00 40.002 ± 0.002 100.007 ± 0.007 20.004 ± 0.003
80.00 90.00 15.00 79.997 ± 0.002 89.998 ± 0.003 14.999 ± 0.002

Case 3. 〈E(x)〉 7.623 10−4 1200 gens.
10.00 30.00 5.000 9.998 ± 0.001 30.003 ± 0.019 4.997 ± 0.004
22.00 60.00 1.000 21.997 ± 0.001 59.661 ± 0.181 0.995 ± 0.002
26.00 40.00 3.000 25.983 ± 0.007 39.867 ± 0.068 3.002 ± 0.006
43.00 70.00 3.000 43.000 ± 0.000 69.951 ± 0.028 3.001 ± 0.001
55.00 60.00 5.000 54.999 ± 0.001 59.964 ± 0.014 5.003 ± 0.001

will occasionally become “stuck” at points in the solution
space where hope of convergence to the target is lost2.
This does not happen in every run, but indicates to the
user that a single run using either method is not enough
to guarantee a reliable parameterisation.

Figure 6 shows the results of Ga-GA (∗), CURVEFIT
(+) and AMOEBA (♦) operating on the fifteen parame-
ter, five Gaussian target. The profile shown for Ga-GA, as
in Sect. 3.1, is the “fittest” phenotype from the ten differ-
ent runs. It is clear from the results in Table 2, and the
plots in Fig. 6 that the sharp features of Gaussian two
(at a possible limit of resolution) present CURVEFIT and
AMOEBA with a very awkward test. Indeed, by inspec-
tion of the errors quoted in Table 2 it is possible to see the
feature(s) that Ga-GA finds most awkward to “identify”,
these are the amplitudes A2, A3 and A4.

3.3. Application to a target with a background level

We now consider the case where the target has a consid-
erable background level. A GA approach makes inclusion
of such a background, or continuum, extremely simple.
To show this, consider a parameterisation of the back-
ground by addition of a quadratic of order n, an example
for n = 2 is given in Eq. (4). As an example, consider a
new three Gaussian configuration [ 10 90 6 50 70 3 80 40 4 ]
with 5% noise (σdata(x) = 0.05C(x)) and background; the
alteration to the fitness evaluation routine is minimal. We
add the quadratic form to the standard phenotype calcu-
lation of Eq. (1), which then becomes:

P (x)j = a+ bx+ cx2 +
N∑
i=1

Gi(x) (4)

where a, b, and c are taken from the adapted genotype
by adding [ a b c ] to the Gaussian description parameters.

2 The interested reader is directed to Charbonneau &
Knapp (1996) for a discussion of this effect.

Table 2. Details of the target parameters(PT ), genetically mod-
elled solution returned by Ga-GA and the deterministic routines
for the fifteen parameter configuration with 15% normally dis-
tributed random noise. Ga-GA results and CPU times (TCPU)
are the mean of an ensemble of ten runs. The CPU times are
normalised to the CPU time of a CURVEFIT run

P PT AMOEBA CURVEFIT Ga-GA
X1 10.00 10.340 9.317 10.305 ± 0.001
A1 30.00 31.002 29.700 30.433 ± 0.011
W1 5.000 5.101 5.062 4.908 ± 0.003
X2 22.00 21.552 21.092 22.024 ± 0.001
A2 60.00 45.021 27.985 81.160 ± 0.073
W2 1.000 1.253 1.744 0.947 ± 0.001
X3 26.00 25.790 25.305 26.187 ± 0.009
A3 40.00 38.408 35.121 38.506 ± 0.031
W3 3.000 2.843 3.051 2.856 ± 0.006
X4 43.00 43.210 42.100 43.122 ± 0.001
A4 70.00 73.502 67.914 73.611 ± 0.017
W4 3.000 2.915 3.138 2.919 ± 0.001
X5 55.00 54.887 54.016 55.018 ± 0.001
A5 60.00 61.449 59.015 61.433 ± 0.001
W5 5.000 5.055 5.265 5.050 ± 0.001

TCPU 114.125 1.000 109.312
E(x) 18.626 12.961 1.889

To generate the target the background parameters are as-
signed the values a = 30.0, b = 0.5 and c = 0.002.

A plot of the target solution (broken line) and the best
phenotype (∗) is shown in Fig. 7. The figure also shows
the profile returned by CURVEFIT (+) and that returned
by AMOEBA (♦). Ga-GA’s estimate of the background
parameters are a = 29.243, b = 0.554 and c = 0.002
(with respective errors given below). Ga-GA results were
returned after 1000 generations and the mean final E(x)
was 0.8664, with CURVEFIT giving a statistically equiva-
lent fit (0.8600) and AMOEBA by a factor of two (2.000).
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Table 3. Results from Sect. 3.3 for a target (P (T )) with fixed
background level and 5% normally distributed random noise.
Again, Ga-GA results and CPU times (TCPU) are the mean of
an ensemble of ten runs. CPU times are normalised to that of
a CURVEFIT run

P PT AMOEBA CURVEFIT Ga-GA
X1 10.00 9.810 9.172 10.131 ± 0.017
A1 90.00 82.404 88.062 90.926 ± 0.529
W1 6.000 6.020 5.980 6.045 ± 0.056
X2 50.00 49.100 49.160 50.101 ± 0.001
A2 70.00 60.001 63.526 68.474 ± 0.121
W2 3.000 3.312 3.238 3.059 ± 0.009
X3 80.00 80.103 79.469 80.429 ± 0.001
A3 40.00 41.261 37.544 38.340 ± 0.077
W3 4.000 4.121 4.303 4.357 ± 0.015
a 30.00 31.180 31.740 29.243 ± 0.964
b 0.500 0.501 0.486 0.554 ± 0.037
c 0.002 0.002 0.002 0.002 ± 0.000

TCPU 80.134 1.000 75.321
E(x) 2.000 0.8600 0.8664

The full results of the parameterisation for all three algo-
rithms are given in Table 3.

4. Analysis of a quiet Sun SUMER spectrum

To test Ga-GA on real data we chose to analyse a spectral
region in the SUMER wavelength range that is known to
suffer from blending problems, both between spectra of
different optical orders as well as just wavelength coin-
cidences. Those problems resulting from blends between
lines that happen to overlap in the first and second grat-
ing orders can be decomposed experimentally, and thus
serve as a limited check on the the GA approach.

The dataset analyzed here was obtained on October
26th 1996, with the 1 × 300 arcsecond slit crossing the

north polar limb, using SUMER’s B detector. Data were
acquired in the 1400 Å spectral region, containing strong
lines of Si iv, O iv, and O iii (in second order), as well as
other weaker lines.

The observing sequence was designed to obtain data
between 1399 and 1408 Å (and in the second order spec-
trum with wavelengths at half of this range) on both the
bare and KBr coated part of the detector, sequentially.
The exposure time on the KBr part was 180 seconds, and
360 seconds on the bare part. The bare and KBr regions
of the detector have very different sensitivities to first and
second order spectra. Assuming that the spectra did not
change significantly between the bare and KBr exposures,
the different count rates acquired on the two regions allow
one to decompose the spectrum analytically into first and
second order components, I1 and I2 through the following
equations

Cts(KBr) = k1I1 + k2I2 (5)

Cts(bare) = b1I1 + b2I2 (6)

where Cts(KBr) and Cts(bare) refer to the count rates
per pixel per second on the KBr and bare parts of the
detector, I1, I2 are intensities of the first and second or-
der spectra, and k1, k2, b1, b2, are (known) instrument
sensitivities defined through these equations. Figure 8,
top panel, shows Cts(KBr) and its components, k1I1 and
k2I2. Values for I1 and I2 were obtained using measure-
ments of Cts(KBr), Cts(bare) and instrumental sensitiv-
ities discussed by Judge et al. (1997). Figure 8 also shows
Cts(bare) and its components, in the bottom panel. In
each case the count rates are averaged over 300 spatial
pixels, including the solar limb, and time during the ex-
posures.

Shown in the top panel of Fig. 9 is a decomposition per-
formed using Ga-GA based only upon the Cts(KBr) spec-
trum shown in the upper panel of Fig. 8. This is simply a
“blind” fit, using no prior information about the spectrum,
except that we expect between 16 and 20 Gaussians to be
present with on constant background. Such “blind” fits
show that we can obtain a reliable decomposition of the
entire spectrum. An example where a “blind” run is sig-
nificantly better than one where a priori knowledge is used
to aid in the decomposition is given below (see Table 4).

4.1. Using additional knowledge

Usually, extra information about the spectrum is known,
and it may be needed for some cases. This information can
be “hard-wired” into Ga-GA easily. For example, we could
demand that the spectral decomposition must not con-
tain spectral detail narrower than the instrumental width
(σinst). Or, we could specify that relative positions (or
intensities) of lines from the same ion, known to great ac-
curacy from laboratory measurement, be fixed to certain
values. Such constraints can be incorporated into the GA
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Fig. 8. The 1400 Å region of the solar spectrum as measured us-
ing the SUMER instrument (see text for details). The top panel
shows the average spectrum, in counts/pixel/second, recorded
on the KBr region of the detector. Positions of known strong
lines are marked- the positions of lines of O III are marked as-
suming that they are formed in the second order. The bottom
panel shows the same thing, but recorded on the bare part of
the detector. The lines plotted with symbols show the spec-
tral decomposition into first and second order lines using the
known sensitivities from SUMER

through a simple modification of the fitness evaluation,
Eq. (3). For such an example we might use:

E(x) = χ2 + CiH
2(Wi, σinst) + (7)

Dij

(
(Xi −Xj)− (X lab

i −X lab
j )
)2

+ . . .

where we introduce the additional constants Ci and Dij to
control the “trade-off” between χ2 and the newly incorpo-
rated information, and where H(Wi, σinst) will weight the
optimization against features narrower than σinst. A future
version of Ga-GA may take advantage of this additional in-
formation to act as desktop on-line plasma analysis pack-
age. Recall however, that the number of parameters in the
calculation effects the rate of convergence (Sect. 3.1 and
Sect. 3.2).

The lower panel of Fig. 9 shows the results of a Ga-
GA decomposition where we have included a line list of all

Unconstrained Wavelengths
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3
KBr Counts

Ga−GA fit to KBr counts

Constrained Wavelengths
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KBr counts

Ga−GA fit to KBr counts
Ga−GA fit (1st order lines)
Ga−GA fit (2nd order lines)

Fig. 9. Comparison between Ga-GA decomposition and the an-
alytic decomposition of the SUMER spectrum in Fig. 8. The
top panel shows the decomposition from the Ga-GA algorithm
using only the KBr data from the top panel of Fig. 8. The
bottom panel shows the decomposition from a single run of
Ga-GA using constrained wavelengths in the fitness calcula-
tion. See Table 4 for the details of the runs with constrained
wavelengths

the lines marked in upper panel of Fig. 8, the implemen-
tation of this is discussed below. The “fixed” wavelength
decomposition3 (see results in Table 4) tells us additional
information about the spectrum; there is an average red-
shift of 0.070 Å of the lines in the list from their refer-
ence position. This corresponds to a velocity of around
10 km s−1. The comparison of the contributions between
first and second order lines in the 1404 − 1408 Å region
shows that Ga-GA can successfully decompose a real, con-
voluted spectrum, into meaningful components.

5. Discussion

We have presented a heuristic search algorithm for the
detection and analysis of spectral lines, which is free of

3 The profiles computed are allowed to deviate from the ref-
erence wavelength by, at most 0.1 Å.
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Table 4. This table contains the results of Ga-GA analysing
the SUMER spectrum of Fig. 8 where the wavelengths, 〈λG〉
(Å), intensities, 〈IG〉, and widths 〈WG〉 (Å) are the mean val-
ues of a ten run ensemble. † indicates that, in this wavelength
range, a line of Ar viii at λ = 700.245 Å (in second order)
dominates the emission, as is clear from inspection of images
shown by Judge et al. (1997) but this was not given in the
line list. This line was detected in the “blind” decomposi-
tion of Sect. 4 (λG = 1400.558 Å, IG = 0.030 and WG =
0.151 Å) with correspondingly different measurements for the
two lines of S iii. This result illustrates that a priori informa-
tion (in this case, the line list), must be correct or erroneous
results will occur. Mean standard deviations in 〈IG〉 and 〈WG〉
are 0.002 and 0.001 respectively

Ion Order λref 〈λG〉 〈IG〉 〈WG〉
S iii

† 2 1400.374 1400.449 0.019 0.406

S iii
† 2 1400.573 1400.648 0.027 0.408

O iv 1 1401.157 1401.232 0.692 0.162
S i 1 1401.514 1401.589 0.110 0.145

S iv 1 1402.770 1402.845 2.875 0.164
S iv 1 1404.771 1404.846 0.368 0.195
O iv 1 1404.806 1404.881 0.018 0.411
S iii 2 1405.566 1405.641 0.044 0.094
S iii 2 1405.643 1405.718 0.108 0.230
O iii 2 1405.676 1405.751 0.092 0.002
O iii 2 1405.791 1405.874 0.014 0.060
S iv 1 1406.076 1406.151 0.086 0.139
O iv 1 1407.382 1407.457 0.138 0.308
O iii 2 1407.701 1407.776 0.091 0.122
O iii 2 1407.709 1407.784 0.270 0.207

operator bias and robust against poor or noisy data. Data
are fitted simultaneously, and not sequentially, therefore
limiting the propagation of systematic errors through the
procedure. Coding is simple to write and easy to use, need-
ing minimal operator input. However, the simplicity of the
GA used here places limitations on the amount of informa-
tion that can be extracted from spectra. Although there
is no practical limit to the number of parameters used
in the genetic decomposition, the efficiency with which
the one point cross-over operator “explores” the solution
space decreases as the number of parameters increases.
However, such a problem can be countered simply by us-
ing a multiple point cross-over operator (see discussion in
Goldberg 1989). Such adaptations are simple to make in
any GA code.

In cases where data is more poorly sampled or noisier
than those examined here, convergence times may become
longer than the few minutes or so typical of the examples
shown. It is clear from the CPU times (TCPU) given in
Tables 1 and 2 that although Ga-GA is not as “fast” as
CURVEFIT we can see that the user must compromise be-
tween run time and the degree of accuracy required since
Ga-GA has clearly demonstrated its usefulness in the pres-
ence of quite severe noise. Presumably there is also a trade-
off between poorer sampling (i.e. fewer points) saving on
floating point operations, and noisier data leading to many

more fitting attempts. Monitoring the convergence of the
GA in the cases examined here indicates that it is adept
at rapidly fitting the large scale spectral features, and pro-
gressively slower at smaller scales. This cascading nature is
central to the operation of a GA, and underpins its stabil-
ity in the face of noisy data (the noise being on the smallest
scale is fitted last). Increasing the scale of the computa-
tion is straightforward since the generation of each child
is an independent calculation (strictly, the generation of
each pair of derived strings), and so the algorithm lends
itself naturally to parallelisation. It is also clear that a GA
routine like Ga-GA could form part of a suite of line anal-
ysis codes, with the GA offering a best initial estimate
of the profile for more conventional processing methods
which require a “good” initial guess.
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